Paper Reference(s)

6683/01

Edexcel GCE

Statistics S1

Advanced Level

Friday 20 May 2011 - Afternoon
 Time: 1 hour 30 minutes

Materials required for examination
Items included with question papers
Mathematical Formulae (Pink) Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S1), the paper reference (6683), your surname, other name and signature.
Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
This paper has 8 questions.
The total mark for this paper is 75 .

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. On a particular day the height above sea level, x metres, and the mid-day temperature, $y^{\circ} \mathrm{C}$, were recorded in 8 north European towns. These data are summarised below

$$
\mathrm{S}_{x x}=3535237.5 \quad \sum y=181 \quad \sum y^{2}=4305 \quad \mathrm{~S}_{x y}=-23726.25
$$

(a) Find $S_{y y}$.
(b) Calculate, to 3 significant figures, the product moment correlation coefficient for these data.
(c) Give an interpretation of your coefficient.

A student thought that the calculations would be simpler if the height above sea level, h, was measured in kilometres and used the variable $h=\frac{x}{1000}$ instead of x.
(d) Write down the value of $\mathrm{S}_{h h}$.
(1)
(e) Write down the value of the correlation coefficient between h and y.
2. The random variable $X \sim \mathrm{~N}\left(\mu, 5^{2}\right)$ and $\mathrm{P}(X<23)=0.9192$.
(a) Find the value of μ.
(b) Write down the value of $\mathrm{P}(\mu<X<23)$.
3. The discrete random variable Y has the probability distribution

y	1	2	3	4
$\mathrm{P}(Y=y)$	a	b	0.3	c

where a, b and c are constants.
The cumulative distribution function $\mathrm{F}(y)$ of Y is given in the following table.

y	1	2	3	4
$\mathrm{~F}(y)$	0.1	0.5	d	1.0

where d is a constant.
(a) Find the value of a, the value of b, the value of c and the value of d.
(b) Find $\mathrm{P}(3 Y+2 \geq 8)$.
4. Past records show that the times, in seconds, taken to run 100 m by children at a school can be modelled by a normal distribution with a mean of 16.12 and a standard deviation of 1.60.

A child from the school is selected at random.
(a) Find the probability that this child runs 100 m in less than 15 s .

On sports day the school awards certificates to the fastest 30% of the children in the 100 m race.
(b) Estimate, to 2 decimal places, the slowest time taken to run 100 m for which a child will be awarded a certificate.
5. A class of students had a sudoku competition. The time taken for each student to complete the sudoku was recorded to the nearest minute and the results are summarised in the table below.

Time	Mid-point, x	Frequency, f
$2-8$	5	2
$9-12$		7
$13-15$	14	5
$16-18$	17	8
$19-22$	20.5	4
$23-30$	26.5	4

(You may use $\sum \mathrm{fx}^{2}=8603.75$)
(a) Write down the mid-point for the $9-12$ interval.
(b) Use linear interpolation to estimate the median time taken by the students.
(c) Estimate the mean and standard deviation of the times taken by the students.

The teacher suggested that a normal distribution could be used to model the times taken by the students to complete the sudoku.
(d) Give a reason to support the use of a normal distribution in this case.

On another occasion the teacher calculated the quartiles for the times taken by the students to complete a different sudoku and found

$$
Q_{1}=8.5 \quad Q_{2}=13.0 \quad Q_{3}=21.0
$$

(e) Describe, giving a reason, the skewness of the times on this occasion.
6. Jake and Kamil are sometimes late for school.

The events J and K are defined as follows
$J=$ the event that Jake is late for school,
$K=$ the event that Kamil is late for school.
$\mathrm{P}(J)=0.25, \mathrm{P}(J \cap K)=0.15$ and $\mathrm{P}\left(J^{\prime} \cap K^{\prime}\right)=0.7$.
On a randomly selected day, find the probability that
(a) at least one of Jake or Kamil are late for school,
(b) Kamil is late for school.

Given that Jake is late for school,
(c) find the probability that Kamil is late.
(3)

The teacher suspects that Jake being late for school and Kamil being late for school are linked in some way.
(d) Determine whether or not J and K are statistically independent.
(e) Comment on the teacher's suspicion in the light of your calculation in part (d).
7. A teacher took a random sample of 8 children from a class. For each child the teacher recorded the length of their left foot, $f \mathrm{~cm}$, and their height, $h \mathrm{~cm}$. The results are given in the table below.

f	23	26	23	22	27	24	20	21
h	135	144	134	136	140	134	130	132

(You may use $\sum f=186 \quad \sum h=1085 \quad \mathrm{~S}_{f f}=39.5 \quad \mathrm{~S}_{h h}=139.875 \quad \sum f h=25$ 291)
(a) Calculate $\mathrm{S}_{f h}$.
(b) Find the equation of the regression line of h on f in the form $h=a+b f$. Give the value of a and the value of b correct to 3 significant figures.
(5)
(c) Use your equation to estimate the height of a child with a left foot length of 25 cm .
(2)
(d) Comment on the reliability of your estimate in part (c), giving a reason for your answer.

The left foot length of the teacher is 25 cm .
(e) Give a reason why the equation in part (b) should not be used to estimate the teacher's height.
8. A spinner is designed so that the score S is given by the following probability distribution.

s	0	1	2	4	5
$\mathrm{P}(S=s)$	p	0.25	0.25	0.20	0.20

(a) Find the value of p.
(b) Find $\mathrm{E}(S)$.
(c) Show that $\mathrm{E}\left(S^{2}\right)=9.45$.
(d) Find $\operatorname{Var}(S)$.

Tom and Jess play a game with this spinner. The spinner is spun repeatedly and S counters are awarded on the outcome of each spin. If S is even then Tom receives the counters and if S is odd then Jess receives them. The first player to collect 10 or more counters is the winner.
(e) Find the probability that Jess wins after 2 spins.
(f) Find the probability that Tom wins after exactly 3 spins.
(g) Find the probability that Jess wins after exactly 3 spins.

J une 2011 Statistics S1 6683 Mark Scheme

Question Number	Scheme	Marks
(a)	$\begin{aligned} & \mathrm{S}_{y y}=4305-\frac{181^{2}}{8} \\ &=\underline{209.875} \end{aligned}$	M1 A1
(b)	$\begin{aligned} & r=\frac{(-) 23726.25}{\sqrt{3535237.5 \times " 209.875 "}} \\ & \\ &=-\frac{0.87104 \ldots}{-\mathbf{0 . 8 7 1})} \end{aligned} \quad \text { (awrt }$	M1 A1
(c)	Higher towns have lower temperature or temp. decreases as height increases	B1
(d)	$\begin{aligned} & \hline \mathrm{S}_{h h}=3.5352375 \quad \text { (awrt 3.54) (condone } \\ & 3.53) \end{aligned}$	B1 (1)
(e)	$\begin{aligned} & r=-\underline{0.87104 \ldots} \quad \text { (awrt } \\ & -\mathbf{0 . 8 7 1}) \end{aligned}$	B1ft (1) (7 marks)
	Notes	
(a) (b) (c)	B1 Must mention temperature (o.e.) and height (above sea level) and interpret the relationship between them. Must be a correct and sensible comment. e.g. "As temperature increases the height of the sea decreases" is B0. BUT simply stating "As temperature increases the height decreases" is B1 although "As height increases the temperature decreases" would be better. Treat mention of 0.87 ... as ISW "strong negative correlation between height and temp" is B0 (no interpretation) " as x increases y decreases" is B0 (no mention of height and temperature)	

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme Marks \\
\hline \begin{tabular}{l}
(d) \\
(e)
\end{tabular} \& \begin{tabular}{ll}
B1 \& accept awrt 3.54 and condone 3.53 (i.e truncation) \\
B1ft \& \begin{tabular}{l}
for awrt -0.871 \\
or ft their final answer to part (b) to the same accuracy (or 3 sf) provided \(-1<r\) \\
\(<1\)
\end{tabular} \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
2. \\
(a)
\end{tabular} \& \[
\begin{array}{lr|l}
\frac{23-\mu}{5}=" 1.40 " \& \text { (o.e) } \& \text { awrt } \pm 1.40 \\
\text { B1 } \\
\& \frac{\mu=16}{16.0)} \& \text { (or awrt } \\
\text { M1A1ft } \\
\& \& \\
\hline
\end{array}
\] \\
\hline (b) \& \begin{tabular}{l|lr}
0.4192 \& B1 \& (1) \\
\& 5 \\
\hline
\end{tabular} \\
\hline (a)

(b) \&

\hline
\end{tabular}

Question Number	Scheme	Marks
5. (a)	10.5	B1
(b)	$\begin{aligned} \left(Q_{2}=\right)(15.5+) \frac{\frac{1}{2} \times 30-14}{8} \times 3 \text { or } \frac{\frac{1}{2} \times 31-14}{8} \times 3 & =\underline{15.875 \text { or } 16.0625} \end{aligned}$	M1
(c)	$\begin{aligned} & \bar{x}=\frac{477.5}{30}=\underline{15.9} \quad\left(15.91 \delta^{\&}\right) \quad\left[\text { Accept } \frac{191}{12} \text { or } 15 \frac{11}{12}\right] \\ & \left.\sigma=\sqrt{\frac{8603.75}{30}-\bar{x}^{2}} \quad=\underline{5.78} \quad \text { (accept } s=5.88\right) \end{aligned}$	M1, A1 M1A1ft, A1
	Since mean and median are similar (or equal or very close) a normal distribution	(5)
(d)	may be suitable. [Allow mean or median close to mode/modal class]	B1
(e)	$Q_{3}-Q_{2}(=8)>(4.5=) Q_{2}-Q_{1}$ Therefore positive skew	$\begin{array}{\|l\|} \mathrm{M} 1 \\ \text { A1 } \end{array}$
		$\begin{array}{r} (2) \\ \text { (11 marks) } \\ \hline \end{array}$
	Notes	
(a)	In parts (a) to (c) a correct answer with no working scores full marks for that value. B1 for 10.5 which may be in the table	
(b)	M1 for a correct ratio and times 3, ignore the lower boundary for this mark A1 for awrt 15.9 (if $n=30$ used) or awrt 16.1 (if $n+1=31$ is used)	
(c)	$1^{\text {st }}$ M1 for attempt at $\sum \mathrm{f} x$ (this may be seen in the table as $\mathrm{f} x: 10,73.5,70,136,82,106$ [condone 1 slip] or awrt 500) and use of $\frac{\sum \mathrm{f} x}{\sum \mathrm{f}}$ or a correct expression for mean.	
	$2^{\text {nd }} \mathrm{M} 1$ for an attempt at σ or σ^{2}, can ft their mean, condone mis-labelling $\sigma^{2}=\sqrt{ }$.. etc Allow use of their $\sum \mathrm{f} x^{2}$ (awrt 9000)	
	$2^{\text {nd }}$ A1ft for a correct expression including square root, ft their mean but not their $\sum \mathrm{fx} x^{2}$. No label or correct label is OK but wrong label (e.g. $\sigma^{2}=\sqrt{\ldots}$) is A0 $3^{\text {rd }} \mathrm{A} 1$ for awrt 5.78, allow $s=$ awrt 5.88. SC Allow M1A1A0 for awrt 5.79 if \bar{x} correct	
(d)	B1 for a reason implying or stating symmetry. "Time is continuous" or "evenly distributed" is B0	

Question Number	Scheme	Marks
(e)	M1 for a clear reason or comparison, values not essential but comparison implying they have been found is required. A1 for stating "positive skew". Condone just "positive" but "positive correlation" is A0 Do not allow arguments based on mean and median since this part relates to a different set of data.	
6. (a)	$\mathrm{P}(J \cup K)=1-0.7$ or $0.1+0.15+0.05=\underline{0.3}$	B1 (1)
(b)	$\mathrm{P}(\mathrm{K})=0.05+0.15$ or " 0.3 " $-0.25+0.15$ or " 0.3 " $=0.25+\mathrm{P}(\mathrm{K})-0.15$	M1
	May be seen on Venn diagram $=\underline{0.2}$	A1
(c)	$\begin{aligned} {[\mathrm{P}(K \mid J)]=\frac{\mathrm{P}(K \cap J)}{\mathrm{P}(J)} } & \\ & =\frac{0.15}{0.25} \end{aligned}$$=\frac{3}{5} \text { or } 0 .$	M1
		A1
		A1
(d)	$\mathrm{P}(J) \times \mathrm{P}(K)=0.25 \times 0.2(=0.05), \quad \mathrm{P}(J \cap K)=0.15$ or	(3)
	$\mathrm{P}(K \mid J)=0.6, \mathrm{P}(K)=0.2$ or may see $\mathrm{P}(J \mid K)=0.75$ and $\mathrm{P}(J)=0.25$ not equal therefore not independent	M1 A1ft
	Not independent so confirms the teacher's suspicion or they are linked	B1ft (2)
(e)	Not independent so confirms the teacher's suspicion or they are linked (This requires a statement about independence in (d) or in (e))	B1ft (1) (9 marks)

Question Number	Scheme	Marks
7.8	$\begin{aligned}\left(S_{f h}=\right) 25291-\frac{186 \times 1085}{8} & =\underline{64.75}\end{aligned}$	M1 A1
(b)	$\begin{array}{lll} b=\frac{64.75 "}{39.5}, & =\underline{1.6392 \ldots} & \text { (awrt 1.6) } \tag{awrt1.6}\\ a=\frac{1085}{8}-b \times \frac{186}{8}, & =\underline{97.512 \ldots} & \text { (awrt 97.5) } \\ & & h=97.5+1.64 f \end{array}$	M1, A1 M1, A1 A1ft (dep on M1M1)
(c)	$h=97.5+1.64 \times 25, \quad=\underline{138 \sim 139} \quad$ (final answer in [138	M1, A1
(d)	Should be reliable, since 25 cm (or f or footlength) is within the range of the dat	B1, B1
(e)	Line is for children - a different equation would apply to adults or $\overline{\text { Children are still growing, height will increase more than foot length }}$	B1
	Notes	
(a)	[NB $\quad \mathbf{r}=\mathbf{0 . 8 7 1}$ so do not confuse this with question 1] M1 for attempting a correct expression [allow a copying slip e.g. 25921] $1^{\text {st }}$ M1 for a correct expression for b, ft their part (a) but not $\mathrm{S}_{f t}=25291$ $1^{\text {st }}$ A1 for awrt 1.6 $2^{\text {nd }}$ M1 for use of $a=\bar{h}-b \times \bar{f}$, ft their value for b. Must use \bar{h} and \bar{f} not values from table. $2^{\text {nd }} \mathrm{A} 1$ for awrt $97.5[\mathrm{NB} a=135-1.63 \times 23=97.51$ but M0A0 since not using \bar{h} and $\bar{f}]$ $3^{\text {rd }}$ A1ft for an equation for h and f with their coefficients to 3sf. Dependent on both Ms Must be 3sf not awrt. Give this mark if seen in (c). Equation must be in h and f not y and x. M1 for using their equation and $f=25$ to find h A1 for their final answer in [138, 139]. Can give if they have 137.7... but round to 138 $1^{\text {st }} \mathrm{B} 1$ for suggesting it is reliable $2^{\text {nd }}$ B1 for mentioning that 25 cm is within range of data. "interpolation"or"not extrapol'B1 Use of "it" or a comment that height is in range is B0 but apply ISW B1 for some comment that states a difference between children and teachers(adults) Must mention teacher/adults and children e.g. ".teacher is not in same age group as the children", "equation is for children not adults" "children and adults are different populations" "teacher will be taller" is B 0 since no mention of children. "equation is only valid for children" is OK since "only" implies not suitable for adults Or Reference to different growth rates	
(b)		
(c)		
(d)		
(e)		

