Paper Reference(s)

6683/01

Edexcel GCE

Statistics S1

Advanced Level

Friday 14 January 2011 - Morning

Time: 1 hour 30 minutes

Materials required for examination
Items included with question papers
Mathematical Formulae (Pink) Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S2), the paper reference (6684), your surname, other name and signature.
Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
This paper has 8 questions.
The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the Examiner.
Answers without working may not gain full credit.

1. A random sample of 50 salmon was caught by a scientist. He recorded the length $l \mathrm{~cm}$ and weight $w \mathrm{~kg}$ of each salmon.

The following summary statistics were calculated from these data.

$$
\sum l=4027 \quad \sum l^{2}=327754.5 \quad \sum w=357.1 \quad \sum l w=29330.5 \quad S_{w w}=289.6
$$

(a) Find $S_{l l}$ and $S_{l w}$.
(b) Calculate, to 3 significant figures, the product moment correlation coefficient between l and w.
(c) Give an interpretation of your coefficient.
2. Keith records the amount of rainfall, in mm, at his school, each day for a week. The results are given below.

$$
\begin{array}{lllllll}
2.8 & 5.6 & 2.3 & 9.4 & 0.0 & 0.5 & 1.8
\end{array}
$$

Jenny then records the amount of rainfall, x mm, at the school each day for the following 21 days. The results for the 21 days are summarised below.

$$
\sum x=84.6
$$

(a) Calculate the mean amount of rainfall during the whole 28 days.

Keith realises that he has transposed two of his figures. The number 9.4 should have been 4.9 and the number 0.5 should have been 5.0.

Keith corrects these figures.
(b) State, giving your reason, the effect this will have on the mean.
3. Over a long period of time a small company recorded the amount it received in sales per month. The results are summarised below.

	Amount received in sales (£1000s)
Two lowest values	3,4
Lower quartile	7
Median	12
Upper quartile	14
Two highest values	20,25

An outlier is an observation that falls
either $1.5 \times$ interquartile range above the upper quartile or $1.5 \times$ interquartile range below the lower quartile.
(a) On the graph paper below, draw a box plot to represent these data, indicating clearly any outliers.
(5)

(b) State the skewness of the distribution of the amount of sales received. Justify your answer.
(c) The company claims that for 75% of the months, the amount received per month is greater than $£ 10000$. Comment on this claim, giving a reason for your answer.
4. A farmer collected data on the annual rainfall, $x \mathrm{~cm}$, and the annual yield of peas, p tonnes per acre.

The data for annual rainfall was coded using $v=\frac{x-5}{10}$ and the following statistics were found.

$$
S_{v v}=5.753 \quad S_{p v}=1.688 \quad S_{p p}=1.168 \quad \bar{p}=3.22 \quad \bar{v}=4.42
$$

(a) Find the equation of the regression line of p on v in the form $p=a+b v$.
(b) Using your regression line estimate the annual yield of peas per acre when the annual rainfall is 85 cm .
5. On a randomly chosen day, each of the 32 students in a class recorded the time, t minutes to the nearest minute, they spent on their homework. The data for the class is summarised in the following table.

Time, t	Number of students
$10-19$	2
$20-29$	4
$30-39$	8
$40-49$	11
$50-69$	5
$70-79$	2

(a) Use interpolation to estimate the value of the median.

Given that

$$
\sum t=1414 \quad \text { and } \quad \sum t^{2}=69378
$$

(b) find the mean and the standard deviation of the times spent by the students on their homework.
(c) Comment on the skewness of the distribution of the times spent by the students on their homework. Give a reason for your answer.
6. The discrete random variable X has the probability distribution

x	1	2	3	4
$\mathrm{P}(X=x)$	k	$2 k$	$3 k$	$4 k$

(a) Show that $k=0.1$
(1)

Find
(b) $\mathrm{E}(X)$
(c) $\mathrm{E}\left(X^{2}\right)$
(d) $\operatorname{Var}(2-5 X)$

Two independent observations X_{1} and X_{2} are made of X.
(e) Show that $\mathrm{P}\left(X_{1}+X_{2}=4\right)=0.1$
(2)
(f) Complete the probability distribution table for $X_{1}+X_{2}$.

y	2	3	4	5	6	7	8
$\mathrm{P}\left(X_{1}+X_{2}=y\right)$	0.01	0.04	0.10		0.25	0.24	

(g) Find $\mathrm{P}\left(1.5<X_{1}+X_{2} \leq 3.5\right)$
7. The bag P contains 6 balls of which 3 are red and 3 are yellow.

The bag Q contains 7 balls of which 4 are red and 3 are yellow.
A ball is drawn at random from bag P and placed in bag Q. A second ball is drawn at random from bag P and placed in bag Q.
A third ball is then drawn at random from the 9 balls in bag Q.

The event A occurs when the 2 balls drawn from bag P are of the same colour. The event B occurs when the ball drawn from bag Q is red.
(a) Copy and complete the tree diagram shown below.

(b) Find $P(A)$.
(c) Show that $\mathrm{P}(B)=\frac{5}{9}$.
(d) Show that $\mathrm{P}(A \cap B)=\frac{2}{9}$.
(e) Hence find $\mathrm{P}(A \cup B)$.
(f) Given that all three balls drawn are the same colour, find the probability that they are all red.
8. The weight, X grams, of soup put in a tin by machine A is normally distributed with a mean of 160 g and a standard deviation of 5 g .

A tin is selected at random.
(a) Find the probability that this tin contains more than 168 g .

The weight stated on the tin is w grams.
(b) Find w such that $\mathrm{P}(X<w)=0.01$.

The weight, Y grams, of soup put into a carton by machine B is normally distributed with mean μ grams and standard deviation σ grams.
(c) Given that $\mathrm{P}(Y<160)=0.99$ and $\mathrm{P}(Y>152)=0.90$, find the value of μ and the value of σ.

J anuary 2011
 Statistics S1 6683
 Mark Scheme

Question Number	Scheme	Marks
1.	$\begin{aligned} & S_{l l}=327754.5-\frac{4027^{2}}{50}=3419.92 \\ & S_{l w}=29330.5-\frac{357.1 \times 4027}{50}=569.666 \end{aligned}$	M1 A1 A1 (3)
(b)	$r=\frac{569.666}{\sqrt{3419.92 \times 289.6}}=0.572 \quad$ awrt 0.572 or 0.573	M1 A1 (2)
(c)	As the length of the salmon increases the weight increases	B1ft $[6]$
	Notes	
(a)	$\begin{aligned} & \text { M1 for at least one correct expression } \\ & 1^{\text {st }} \text { A1 for } S_{l l}=\text { awrt } 3420 \quad \text { (Condone } S_{x x}=\ldots \text { or even } S_{y y}=\ldots \text {) } \\ & 2^{\text {nd }} \text { A1 for } S_{l w}=\text { awrt } 570 \quad \text { (Condone } S_{x y}=\ldots \text {) } \end{aligned}$	
(b)	M1 for attempt at correct formula. Must have their $S_{l \mid}, S_{l w}$ and given $S_{w w}$ in the correct places If $S_{I l}, S_{l w}$ are correct and an answer of awrt 0.57 is seen then award M1A0 M0 for $\frac{29330.5}{\sqrt{327754.5 \times 289.6}}$	
(c)	B1ft for a comment mentioning "length" and "weight", not just l and w, and the idea of longer salmon weighing more. e.g. "positive correlation between weight and length" is B0 since the idea of positive correlation is not explained. Allow "larger" instead of "heavier" or "longer" Ignore any spurious values mentioned such as 0.572 If their r is negative (but must be $r>-1$) ft an appropriate comment. Condone $r>1$ if comment is correct. If $\|r\|<0.4$ allow a comment of no or little relationship between weight and length but for $0<r<0.4$ the printed answer is still acceptable too. Treat mention of "skewness" as ISW if a correct interpretation is given	

Question Number	Scheme	Marks
4. (a)	$\begin{aligned} & b=\frac{1.688}{5.753}=0.293 \\ & a=3.22-4.42 \times 0.293=1.9231 \ldots \\ & p=1.92+0.293 v \end{aligned}$	M1A1 M1 A1 (4)
(b)	$\begin{align*} & v=\frac{85-5}{10}=8 \\ & p=1.92+0.293 \times 8=4.3 \tag{awrt4.3} \end{align*}$	M1 A1 (2) [6]
	Notes	
(a)	Can ignore (a) and (b) labels here $1^{\text {st }}$ M1 for a correct expression for b. $\frac{1.688}{1.168}$ is M0 $1^{\text {st }} \mathrm{A} 1$ for awrt 0.29 $2^{\text {nd }}$ M1 for use of $a=\bar{p}-b \bar{v}$ follow through their value of b (or even just the letter b) $2^{\text {nd }} \mathrm{A} 1$ for a complete equation with $a=$ awrt 1.92 and $b=$ awrt 0.293 y or $p=1.92+0.293 x$ is A0 Correct answer with no working is $4 / 4$	
(b)	M1 for an attempt to find the value of v when $x=85$ (at least 2 correct terms in $\pm \frac{85-5}{10}$) or for an attempt to find an equation for p in terms of x and using $x=85$ Attempt at equation of p in x requires $p=1.92+0.293 \frac{(x-5)}{10}$ A1 for awrt 4.3 (award when first seen and apply ISW) N.B. $p=1.92+0.293 \times 85$ (o.e.) is M0A0	

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} & \text { Median }=32 / 2=16^{\text {th }} \text { term }(16.5) \\ & \frac{x-39.5}{49.5-39.5}=\frac{16-14}{25-14} \text { or } x=39.5+\left(\frac{2}{11} \times 10\right) \\ & \text { Median }=41.3 \quad \text { (use of } n+1 \text { gives 41.8) } \end{aligned}$	M1 A1
(b)	$\text { Mean }=\frac{1414}{32}=44.1875$ (awrt 44.2) $\begin{aligned} \text { Standard deviation } & =\sqrt{\frac{69378}{32}-\left(\frac{1414}{32}\right)^{2}} \\ & =14.7 \quad(\text { or } s=14.9) \end{aligned}$	B1 M1 A1
(c)	mean > median therefore positive skew	B1ft B1ft (2) [7]
	Notes	
(a)	M1 for an attempt to use interpolation to find the median. Condone use of 39 or 40 for 39.5 e.g. allow $39+\frac{2}{11} \times 10$ (o.e.) or $40+\frac{2}{11} \times 10$ (o.e.) to score M1A0 but must have the 10 A1 for awrt 41.3 (or awrt 41.8 if using $(n+1)$)	
(b)	B1 for awrt 44.2 M1 for a correct expression including square root. (Allow ft of their mean) A1 for awrt 14.7 (If using s for awrt 14.9) You may see $\sum t=1339 \rightarrow \bar{t}=41.8$ and $\sum t^{2}=62928 \rightarrow \sigma 14.7$ or $s=14.9$ this scores B0 for the mean but can score M1 for a correct st.dev expression and A1 for ans. Correct answer only in (a) and (b) can score full marks but check ($n+1$) case in (a)	
(c) ($1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ for a correct comparison of their mean and their median (may be in a formula) Calculating median - mean as negative is OK for this B1 but must say +ve skew for $2^{\text {nd }} \mathrm{B} 1$ Only allow comparison to be ≈ 0 if \mid mean - median $\mid \leq 0.5$ $2^{\text {nd }}$ B1ft for a correct description of skewness based on their values of mean and median. ft their values for mean and median not their previous calculation/comparison Must be compatible with their previous comparison (if they have one) "Positive skew" with no reason is B0B1 provided you can see their values that imply that. Description should be "positive" or "negative" or "no" skew or "symmetric" "Positive correlation" is B0 $1^{\text {st }} \mathrm{B} 1 \mathrm{ft}$ if $Q_{1}=$ awrt 32 and $Q_{3}=$ awrt 49 seen and a correct comparison made. ft Q_{2} $2^{\text {nd }} \mathrm{B} 1 \mathrm{ft}$ if $Q_{1}=$ awrt 32 or $Q_{3}=$ awrt 49 seen and a correct description based on their quartiles and their comparison is made. (Should get "negative skew")	

Question Number	Scheme Marks
	Notes
(a)	B1 for a clear attempt to use sum of probabilities $=1$. Must see previous line as well as $k=0.1$ A correct expression for $\mathrm{E}(X)$ or $\mathrm{E}\left(X^{2}\right)$ that is later divided by $\mathbf{4}$ scores M0
(b)	M1 for a completely correct expression. May be implied by correct answer of 3 or $30 k$ A1 for 3 only.
(c)	M1 for a completely correct expression. May be implied by correct answer of 10 or 100 k A1 for 10 only. [For $\mathrm{E}\left(X^{2}\right)=0.1+0.8+2.7+6.4-9=1$ scores M0A0 but accept this as $\operatorname{Var}(X)$ in (d)]
(d)	$1^{\text {st }} \mathrm{M} 1$ for using $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$, f.t their values from (b) and (c) Allow this mark for $\operatorname{Var}(X)=10-9$ or better. May be implied if this is seen in (c). $2^{\text {nd }} \mathrm{M} 1$ for $5^{2} \operatorname{Var}(X)$ or $25 \operatorname{Var}(X)$ can f.t. their $\operatorname{Var}(X)$. Allow -5^{2} if it later becomes +25 A1 for 25 only. Dependent upon both Ms Forming distribution for $Y=2-5 X$ gets M1 for $E\left(Y^{2}\right)=194$ then M1A1 for 194-169=25
(e)	M1 for correctly identifying $(1,3)$ or $(3,1)$ and $(2,2)$ as required cases ($3 k^{2}+4 k^{2}$ or better) A1 cso for 0.1 only but must see evidence for M1
(f)	$1^{\text {st }} \mathrm{B} 1$ for 0.2 correctly assigned. May be in table. $2^{\text {nd }} \mathrm{B} 1$ for 0.16 correctly assigned. May be in table
(g)	M1 for $\mathrm{P}(2)+\mathrm{P}(3)$. May be implied by correct answer of 0.05 A1 for 0.05 only. Correct answer only can score full marks in parts (b), (c), (f) and (g)

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 7. \& \& B1
B1

B1

B1

(4)

\hline (b) \& $$
\mathrm{P}(A)=\mathrm{P}(R R)+\mathrm{P}(Y Y)=\frac{1}{2} \times \frac{2}{5}+\frac{1}{2} \times " \frac{2}{5} "=\frac{2}{5} \quad \begin{aligned}
& \text { B1 for } \frac{1}{2} \times \frac{2}{5}(\mathrm{oe}) \text { seen at least } \\
& \text { once }
\end{aligned}
$$ \& B1 M1 A1

(3)

\hline (c) \& | $\mathrm{P}(B)=\mathrm{P}(R R R)+\mathrm{P}(R Y R)+\mathrm{P}(Y R R)+\mathrm{P}(Y Y R)$ | M1 for at least 1 case of 3 balls
 identified. (Implied by 2 $\left.{ }^{\text {nd }} \mathrm{M} 1\right)$ |
| :--- | :--- |
| $\left(\frac{1}{2} \times \frac{2}{5} \times " \frac{2}{3} "\right)+\left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right)+\left(\frac{1}{2} \times " \frac{3}{5} " \times \frac{5}{9}\right)+\left(\frac{1}{2} \times \frac{2}{5} " \times \frac{4}{9} "\right)=\frac{5}{9}(*)$ | | \& | M1 |
| :--- |
| M1,A1cso (3) |

\hline (d) \& | $\mathrm{P}(A \cap B)$ | $=\mathrm{P}(R R R)+\mathrm{P}(Y Y R)$ | M1 for identifying both cases and +
 probs.
 may be implied by correct expressions |
| ---: | :--- | :--- |
| | $=\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right)+\left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right)$ | $=\frac{2}{9}\left(^{*}\right)$ | \& | M1 |
| :--- |
| Alcso |
| (2) |

\hline (e) \& \[
$$
\begin{array}{rlr}
\mathrm{P}(A \cup B) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(A \cap B) \quad \text { Must have some attempt to use } \\
& =" \frac{2}{5} "+\frac{5}{9}-\frac{2}{9}=\frac{11}{15}
\end{array}
$$

\] \& | M1 |
| :--- |
| Alcao |

\hline
\end{tabular}

Question Number	Scheme		Marks
(f)	$\frac{\mathrm{P}(R R R)}{\mathrm{P}(R R R)+\mathrm{P}(Y Y Y)}=\frac{\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right)+\left(\frac{1}{2} \times \frac{2}{5} \times \frac{5}{9}\right)}=\frac{6}{11}$	Probabilities must come from the product of 3 probs. from their tree diagram.	M1 Alft Al cao
	Notes		
(b)	M1 for both cases, and +, attempted, ft their values from tree diagram. May be 4 cases of 3 balls.		
(c)	$2^{\text {nd }} \mathrm{M} 1$ for all 4 correct expressions, ft their values from tree diagram. A1 is cso		
(e)	M1 for clear attempt to use the correct formula, must have some correct substitution. ft their (b)		
(f)	M1 for identifying the correct probabilities and forming appropriate fraction of probs. $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct expression using probabilities from their tree Accept exact decimal equivalents. Correct answer only is full marks except in (c) and (d)		

Question Number	Scheme Marks
8. (a)	$\begin{aligned} \mathrm{P}(X>168) & =\mathrm{P}\left(Z>\frac{168-160}{5}\right) \\ & =\mathrm{P}(Z>1.6) \\ & =0.0548 \end{aligned}$awrt 0.0548M1 A1 A1
(b)	$\begin{aligned} \mathrm{P}(X<w) & =\mathrm{P}\left(\mathrm{Z}<\frac{w-160}{5}\right) \\ \frac{w-160}{5} & =-2.3263 \\ w & =148.37 \end{aligned}$ awrt 148 M1 A1
(c)	$\frac{160-\mu}{\sigma}=2.3263$ M 1 $\frac{152-\mu}{\sigma}=-1.2816$ B 1 $160-\mu=2.3263 \sigma$ B 1 $152-\mu=-1.2816 \sigma$ $8=3.6079 \sigma$ awrt 2.22 A1 $\sigma=2.21 \ldots$. awrt 155 A1 (6) $\mu=154.84 \ldots$ [12]
	Notes
(a)	M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm\left(\frac{168-160}{5}\right)$ or implied by 1.6 $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(Z>1.6)$ or $\mathrm{P}(Z<-1.6)$ ie $z=1.6$ and a correct inequality or 1.6 on a shaded diagram Correct answer to (a) implies all 3 marks
(b)	M1 for attempting $\pm\left(\frac{w-160}{5}\right)=$ recognizable z value $(\|z\|>1)$ B1 for $z= \pm 2.3263$ or better. Should be $z=\ldots$ or implied so: $1-2.3263=\frac{w-160}{5}$ is M0B0 A1 for awrt 148. This may be scored for other z values so M1B0A1 is possible For awrt 148 only with no working seen award M1B0A1 M1 for attempting to standardize 160 or 152 with μ and σ (allow \pm) and equate to z value $(\|z\|>1)$ $1^{\text {st }} \mathrm{B} 1$ for awrt ± 2.33 or ± 2.32 seen $2^{\text {nd }}$ B1 for awrt ± 1.28 seen $2^{\text {nd }}$ M1 for attempt to solve their two linear equations in μ and σ leading to equation in just one variable $1^{\text {st }} \mathrm{A} 1$ for $\sigma=$ awrt 2.22. Award when $1^{\text {st }}$ seen $2^{\text {nd }} \mathrm{A} 1$ for $\mu=$ awrt 155 . Correct answer only for part (c) can score all 6 marks. NB $\sigma=2.21$ commonly comes from $z=2.34$ and usually scores M1B0B1M1A0A1 The A marks in (c) require both M marks to have been earned

