Paper Reference(s)

6683/01 Edexcel GCE

Statistics S1

Advanced Level

Friday 14 January 2011 – Morning

Time: 1 hour 30 minutes

Materials required for examination

Items included with question papers

Mathematical Formulae (Pink)

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S2), the paper reference (6684), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

This paper has 8 questions.

The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

H35410A

This publication may only be reproduced in accordance with Edexcel Limited copyright policy. ©2011 Edexcel Limited

$S_{ww}=28$	$\sum lw = 29 \ 330.5$	$\sum w = 357.1$	7 754.5	$\sum l^2 = 32$	$\sum l = 4027$
				and S_{lw} .	(a) Find S_{ll} and
cient betwe	nent correlation coeffic	the product mon	ant figures,	te, to 3 signific	(b) Calculate, and w.
		cient.	f your coeff	interpretation o	(c) Give an int
. The results	l, each day for a week.	mm, at his school	rainfall, in		Keith records the given below.
	0.5 1.8	3 9.4 0.0	5.6 2	2.8	
r the follov	ne school each day for		ount of rain	records the am	•
r the follov	ne school each day for	Ifall, x mm, at the	ount of rain	records the am	•
r the follov	ne school each day for	Ifall, x mm, at the ummarised below	ount of rain 21 days are :	records the ame results for the 2	21 days. The re
	ne school each day for	Ifall, x mm, at the number of all, x mm, at the number of x and x if	ount of rain 21 days are a unt of rainfa ansposed ty	records the american results for the american terms are the mean amore	21 days. The re (a) Calculate the Keith realises to the content of the content o
	ne school each day for e 28 days.	Ifall, x mm, at the number of all, x mm, at the number of x and x if	ount of rain 21 days are a unt of rainfa ansposed ty	records the american results for the factor that he has tr	21 days. The re (a) Calculate the Keith realises the number

A random sample of 50 salmon was caught by a scientist. He recorded the length l cm and weight w kg of each salmon.

1.

H35410A 2

3. Over a long period of time a small company recorded the amount it received in sales per month. The results are summarised below.

	Amount received in sales (£1000s)
Two lowest values	3, 4
Lower quartile	7
Median	12
Upper quartile	14
Two highest values	20, 25

An outlier is an observation that falls either $1.5 \times$ interquartile range above the upper quartile or $1.5 \times$ interquartile range below the lower quartile.

(a) On the graph paper below, draw a box plot to represent these data, indicating clearly any outliers.

(5)

(b) State the skewness of the distribution of the amount of sales received. Justify your answer.

(2)

(c) The company claims that for 75 % of the months, the amount received per month is greater than £10 000. Comment on this claim, giving a reason for your answer.

(2)

4. A farmer collected data on the annual rainfall, x cm, and the annual yield of peas, p tonnes per acre.

The data for annual rainfall was coded using $v = \frac{x-5}{10}$ and the following statistics were found.

$$S_{vv} = 5.753$$
 $S_{pv} = 1.688$ $S_{pp} = 1.168$ $\overline{p} = 3.22$ $\overline{v} = 4.42$

(a) Find the equation of the regression line of p on v in the form p = a + bv.

(4)

(b) Using your regression line estimate the annual yield of peas per acre when the annual rainfall is 85 cm.

(2)

5. On a randomly chosen day, each of the 32 students in a class recorded the time, t minutes to the nearest minute, they spent on their homework. The data for the class is summarised in the following table.

Time, t	Number of students
10 – 19	2
20 – 29	4
30 – 39	8
40 – 49	11
50 - 69	5
70 – 79	2

(a) Use interpolation to estimate the value of the median.

(2)

Given that

$$\sum t = 1414$$
 and $\sum t^2 = 69378$,

(b) find the mean and the standard deviation of the times spent by the students on their homework.

(3)

(c) Comment on the skewness of the distribution of the times spent by the students on their homework. Give a reason for your answer.

(2)

H35410A 4

6. The discrete random variable *X* has the probability distribution

x	1	2	3	4
P(X = x)	k	2 <i>k</i>	3 <i>k</i>	4k

(a) Show that k = 0.1

(1)

Find

(b) E(X)

(2)

(c) $E(X^2)$

(2)

(*d*) Var(2-5X)

(3)

Two independent observations X_1 and X_2 are made of X.

(e) Show that $P(X_1 + X_2 = 4) = 0.1$

(2)

(f) Complete the probability distribution table for $X_1 + X_2$.

(2)

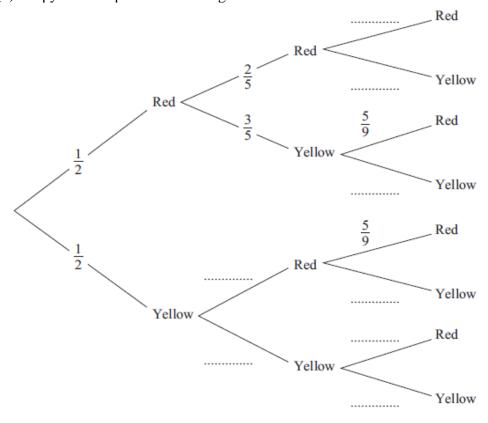
у	2	3	4	5	6	7	8
$P(X_1 + X_2 = y)$	0.01	0.04	0.10		0.25	0.24	

(g) Find P($1.5 < X_1 + X_2 \le 3.5$)

(2)

7. The bag *P* contains 6 balls of which 3 are red and 3 are yellow.

The bag Q contains 7 balls of which 4 are red and 3 are yellow.


A ball is drawn at random from bag P and placed in bag Q. A second ball is drawn at random from bag P and placed in bag Q.

A third ball is then drawn at random from the 9 balls in bag Q.

The event A occurs when the 2 balls drawn from bag P are of the same colour.

The event B occurs when the ball drawn from bag Q is red.

(a) Copy and complete the tree diagram shown below.

(b) Find P(A).

(3)

(4)

(c) Show that $P(B) = \frac{5}{9}$.

(3)

(d) Show that $P(A \cap B) = \frac{2}{9}$.

(2)

(e) Hence find $P(A \cup B)$.

(2)

(f) Given that all three balls drawn are the same colour, find the probability that they are all red.

(3)

H35410A 6

8. The weight, X grams, of soup put in a tin by machine A is normally distributed with a mean of 160 g and a standard deviation of 5 g.

A tin is selected at random.

(a) Find the probability that this tin contains more than 168 g. (3)

The weight stated on the tin is w grams.

(b) Find w such that P(X < w) = 0.01.

(3)

The weight, Y grams, of soup put into a carton by machine B is normally distributed with mean μ grams and standard deviation σ grams.

(c) Given that P(Y < 160) = 0.99 and P(Y > 152) = 0.90, find the value of μ and the value of σ .

TOTAL FOR PAPER: 75 MARKS

END

January 2011 Statistics S1 6683 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$S_{ll} = 327754.5 - \frac{4027^2}{50} = 3419.92$ $S_{lw} = 29330.5 - \frac{357.1 \times 4027}{50} = 569.666$	M1 A1 A1 (3)
(b)	$r = \frac{569.666}{\sqrt{3419.92 \times 289.6}} = 0.572$ awrt 0.572 or 0.573	M1 A1 (2)
(c)	As the length of the salmon increases the weight increases	B1ft (1) [6]
	<u>Notes</u>	
(a)	M1 for at least one correct expression $1^{\text{st}} \text{ A1 for } S_{ll} = \text{awrt } 3420$ (Condone $S_{xx} = \dots$ or even $S_{yy} = \dots$) $2^{\text{nd}} \text{ A1 for } S_{lw} = \text{awrt } 570$ (Condone $S_{xy} = \dots$)	
(b)	M1 for attempt at correct formula. Must have their S_{ll} , S_{lw} and given S_{ww} in the correct places If S_{ll} , S_{lw} are correct and an answer of awrt 0.57 is seen then award M M0 for $\frac{29330.5}{\sqrt{327754.5 \times 289.6}}$	M1A0
(c)	B1ft for a comment mentioning "length" and "weight", not just l and w , are longer salmon weighing more. e.g. "positive correlation between weight and length" is B0 since the correlation is not explained. Allow "larger" instead of "heavier" or "longer" Ignore any spurious values mentioned such as 0.572 If their r is negative (but must be $r > -1$) ft an appropriate comment. Condone $r > 1$ if comment is correct. If $ r < 0.4$ allow a comment of no or little relationship between weigh but for $0 < r < 0.4$ the printed answer is still acceptable too. Treat mention of "skewness" as ISW if a correct interpretation is given	idea of positive

1

Question Number	Scheme	Marks
2. (a)	2.8 + 5.6 + 2.3 + 9.4 + 0.5 + 1.8 + 84.6 = 107 mean = $107 / 28 = 3.821$ (awrt 3.8)	M1 A1 (2)
(b)	It will have no effect since one is 4.5 under what it should be and the other is 4.5 above what it should be.	B1 dB1 (2) [4]
	<u>Notes</u>	
(a)	M1 for a clear attempt to add the two sums. Accept a full expression or 2.8 + 5.6 ++ 84.6 = x where 100 <x<110 (condone="" 1="" 2="" 2sf="" 3.8="" 84.6="" <math="" a="" a1="" accept="" and="" at="" awrt="" correct="" data="" dp="" for="" given="" here="" i.e.="" is="" keith's="" least="" of="" or="" seeing="" sf)="" since="" slip.="" terms="" the="" to="" two="" with="">\frac{107}{28} or $3\frac{23}{28}$ or any exact equivalent Correct answer implies M1A1</x<110>	
(b)	 1st B1 for clearly stating that it will have no effect. ("roughly the same" is B0 2nd dB1 for a supporting reason that mentions the fact that the increase and decressame and gives some numerical value(s) to support this. e.g. Sum of Keith's observations is still 22.4 (or mean is still 3.2) or Sum is still 107 or 9.4-4.9=5-0.5 (o.e.) This second B1 is dependent on their saying there is no effect so B0B1 	ease are the

Question Number	Scheme	Marks				
3. (a)	Outliers $14 + 1.5 \times (14 - 7) = 24.5$ $7 - 1.5 \times (14 - 7) = -3.5$	M1 A1				
	Outlier 25 either upper limit acceptable on diagram	M1 A1ft B1				
	Sales in £'000	(5)				
(b)	Since $Q_3 - Q_2 < Q_2 - Q_1$. Allow written explanation negatively skew	B1 dB1 (2)				
(c)	not true since the lower quartile is 7000 and therefore 75% above 7000 not 10000 or 10 is inside the box or any other sensible comment	B1 dB1 (2) [9]				
	<u>Notes</u>					
(a)	A fully correct box-plot (either version) with no supporting work scores 5/5. Otherwise read on 1st M1 for at least one correct calculation seen 1st A1 for 24.5 and -3.5 (or just negative noted) seen. May be read off the graph. If both values are seen but no calculation is given then M1A1, one value M1A0. 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct values (condone no median marked) 2nd A1ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off their scale If both upper whiskers are seen A0 Apply ft for their whiskers being compatible with their outlier limits e.g. if their lower limit is + 3.5 then a lower whisker ending at 4 or 3.5 is OK B1 for only one outlier appropriately marked at 25 Apply ± 0.5 square accuracy for diagram					
(b)	$1^{\text{st}} B1 \qquad \text{for} Q_3 - Q_2 < Q_2 - Q_1 \text{statement or an equivalent statement in words} \\ \qquad \qquad \qquad \text{Use of} Q_3 - Q_2 < Q_2 - Q_1 \text{does not require differences to be seen.} \\ 2^{\text{nd}} dB1 \qquad \text{for "negative skew" dependent on suitable reason given above. "correlation" is B0} \\ \qquad \qquad \text{"positive skew" with a supporting argument based on whiskers can score B1B1} \\ \qquad \qquad \text{e.g. "right hand whisker is longer than LH one so positive skew"} \\ \qquad $					
(c)	1 st B1 for rejecting the company's claim 2 nd dB1 for an appropriate supporting reason. Dependent on rejecting company	y's claim.				

Question Number	Scheme	Marks
4. (a)	$b = \frac{1.688}{5.753} = 0.293$ $a = 3.22 - 4.42 \times 0.293 = 1.9231$ $p = 1.92 + 0.293v$	M1A1 M1 A1 (4)
(b)	$v = \frac{85 - 5}{10} = 8$ $p = 1.92 + 0.293 \times 8 = 4.3$ (awrt 4.3)	M1 A1 (2) [6]
	Notes	[0]
_	Can ignore (a) and (b) labels here	
(a)	1^{st} M1 for a correct expression for b . $\frac{1.688}{1.168}$ is M0 1^{st} A1 for awrt 0.29	
	2^{nd} M1 for use of $a = \overline{p} - b\overline{v}$ follow through their value of b (or even just the 2^{nd} A1 for a complete equation with $a = \text{awrt } 1.92$ and $b = \text{awrt } 0.293$ y or $p = 1.92 + 0.293x$ is A0 Correct answer with no working is $4/4$	letter b)
(b)	M1 for an attempt to find the value of v when $x = 85$ (at least 2 correct the $\pm \frac{85-5}{10}$) or for an attempt to find an equation for p in terms of x and using $x = 0$. Attempt at equation of p in x requires $p = 1.92 + 0.293 \frac{(x-5)}{10}$. A1 for awrt 4.3 (award when first seen and apply ISW) N.B. $p = 1.92 + 0.293 \times 85$ (o.e.) is MOA0	

Question Number	Scheme	Marks				
5.	M-1' 22/2 16th (16.5)					
(a)	Median = $32/2 = 16^{th}$ term (16.5) x-39.5 $16-14$					
	$\frac{x-39.5}{49.5-39.5} = \frac{16-14}{25-14} \text{ or } x = 39.5 + \left(\frac{2}{11} \times 10\right)$	M1				
	Median = 41.3 (use of $n + 1$ gives 41.8) (awrt 41.3)	A1 (2)				
(1-)	M 1414 44 1975	(2)				
(b)	Mean= $\frac{1414}{32}$ = 44.1875 (awrt 44.2)	B1				
	Standard deviation = $\sqrt{\frac{69378}{32} - \left(\frac{1414}{32}\right)^2}$	M1				
	= 14.7 (or s = 14.9)	A1 (2)				
(c)	mean > median therefore positive skew	B1ft B1ft				
, ,		(2)				
	Notes	[7]				
(a)	M1 for an attempt to use interpolation to find the median. Condone use of	39 or 40 for 39.5				
	e.g. allow $39 + \frac{2}{11} \times 10$ (o.e.) or $40 + \frac{2}{11} \times 10$ (o.e.) to score M1A0 but mu	st have the 10				
	A1 for awrt 41.3 (or awrt 41.8 if using $(n + 1)$)					
(1-)	D1 6 1442					
(b)	B1 for awrt 44.2 M1 for a correct expression including square root. (Allow ft of their mea	an)				
	A1 for awrt 14.7 (If using s for awrt 14.9) You may see $\sum t = 1339 \rightarrow \bar{t} = 41.8$ and $\sum t^2 = 62928 \rightarrow \sigma$ 14.7 or $s = 14.8$	1 9				
Mid-points	this scores B0 for the mean but can score M1 for a correct st.dev expression					
	ans.					
	Correct answer only in (a) and (b) can score full marks but check (n +	1) case in (a)				
(c)	1 st B1ft for a correct comparison of their mean and their median (may be Calculating median – mean as negative is OK for this B1 but mus for 2 nd B1					
	Only allow comparison to be ≈ 0 if $\left \text{mean - median} \right \le 0.5$	1 1				
	2 nd B1ft for a correct description of skewness <u>based on their values of mean and median</u> . ft their values for mean and median not their previous calculation/comparison Must be compatible with their previous comparison (if they have one)					
	"Positive skew" with no reason is B0B1 provided you can see the imply that. Description should be "positive" or "negative" or "no" skew or "					
Quartiles	"Positive correlation" is B0 1^{st} B1ft if Q_1 = awrt 32 and Q_3 = awrt 49 seen and a correct comparison in	made ft O				
Qualtiles	2 nd B1ft if Q_1 = awrt 32 and Q_3 = awrt 49 seen and a correct description ba					
	quartiles and their comparison is made. (Should get "negative sk					
1	The state of the s	· · · /				

Question Number	Scheme					Mark	S
6. (a)		k+2k+3k+4k=1 or $10k=1k=0.1$ (*) [allow verification with a comment e.g. "so $k=0.1$ "]					
(b)	$E(X) = 1 \times 0.1 + 2 \times 0.2 + 3$	$\times 0.3 + 4 \times 0.4$	= 3			M1 A1	
							(2)
(c)	$E(X^2) = 1 \times 0.1 + 4 \times 0.2 + 9 \times 0.1$	<0.3+16×0.4=	:10			M1 A1	
	` ,						(2)
(d)	Var(X) = 10 - 9(=1)					M1	, ,
	$Var(2-5X) = 5^2 Var(X) =$	= 25				M1 A1	
	,						(3)
(e)	$P(1,3)+P(2,2)=2\times0.1\times0$	$0.3 + 0.2 \times 0.2 =$	0.1 (*)			M1 A1cso)
							(2)
(f)	$X_1 + X_2$ 2 3	4 5	6	7	8	B1 B1	()
	p 0.01 0.0	4 0.1 0 .	2 0.25	0.24	0.16		(2)
(g)	P(2) + P(3) = 0.05					M1A1	
							(2)
							[14]

Question Number	Scheme	Marks				
	Notes					
(a)	B1 for a clear attempt to use sum of probabilities = 1. Must see previous line	as well as $k = 0.1$				
	A correct expression for $E(X)$ or $E(X^2)$ that is later divided by 4	scores M0				
(b)	M1 for a completely correct expression. May be implied by correct answer A1 for 3 only.	r of 3 or 30k				
(c)	M1 for a completely correct expression. May be implied by correct answer A1 for 10 only.	r of 10 or 100k				
	[For $E(X^2) = 0.1 + 0.8 + 2.7 + 6.4 - 9 = 1$ scores M0A0 but accept this as	Var(X) in (d)]				
(d)	1^{st} M1 for using $Var(X) = E(X^2) - E(X)^2$, f.t their values from (b) and (c)					
	Allow this mark for $Var(X) = 10-9$ or better. May be implied if this	is seen in (c).				
	2^{nd} M1 for 5^2 Var(X) or 25 Var(X) can f.t. their Var(X). Allow -5^2 if it late					
	A1 for 25 only. Dependent upon both Ms					
	Forming distribution for $Y = 2.5X$ gets M1 for E(Y^2)=194 then M1A1 for 194-169=25					
(e)	M1 for correctly identifying $(1, 3)$ or $(3, 1)$ and $(2, 2)$ as required cases					
(6)	$(3k^2 + 4k^2 \text{ or better})$					
	A1 cso for 0.1 only but must see evidence for M1					
(£)						
(f)	1 st B1 for 0.2 correctly assigned. May be in table.					
	2 nd B1 for 0.16 correctly assigned. May be in table					
(g)	M1 for $P(2) + P(3)$. May be implied by correct answer of 0.05					
(9)	A1 for 0.05 only.					
	Correct answer only can score full marks in parts (b), (c), (f) a	and (g)				
	· · · · · · · · · · · · · · · · · · ·	\ O /				

Question Number	Scheme	Marks
7. (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1
	$\frac{4}{9} \qquad \qquad$	B1
	both $\frac{3}{5}$, $\frac{4}{9}$ $\frac{4}{9}$ $\frac{4}{45}$	B1
	$\frac{5}{9} \text{Y} \left(\frac{1}{9}\right)$ all three of $\frac{4}{9}, \frac{4}{9}, \frac{5}{9}$	B1 (4)
(b)	$P(A) = P(RR) + P(YY) = \frac{1}{2} \times \frac{2}{5} + \frac{1}{2} \times \frac{2}{5} = \frac{2}{5}$ B1 for $\frac{1}{2} \times \frac{2}{5}$ (oe) seen at least once	B1 M1 A1 (3)
(c)	P(B) = P(RRR) + P(RYR) + P(YRR) + P(YYR) M1 for at least 1 case of 3 balls identified. (Implied by 2 nd M1)	M1
	$\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right) = \frac{5}{9} (*)$	M1,A1cso
(d)	$P(A \cap B) = P(RRR) + P(YYR)$ M1 for identifying both cases and + probs. may be implied by correct expressions	(3) M1
	$= \left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right) \qquad \underline{=\frac{2}{9}} (*)$	A1cso (2)
(e)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Must have some attempt to <u>use</u>	M1
	$= \frac{2}{5} + \frac{5}{9} - \frac{2}{9} = \frac{11}{15}$	A1cao (2)

Question Number	Scheme	Marks		
(f)	$\frac{P(RRR)}{P(RRR) + P(YYY)} = \frac{\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{5}{9}\right)} = \frac{6}{11}$ Probabilities must come from the product of 3 probs. from their tree diagram.	M1 A1ft A1 cao (3) [17]		
	<u>Notes</u>			
(b)	M1 for both cases, and +, attempted, ft their values from tree diagram. May be 4 cases of 3 balls.			
(c)	2 nd M1 for all 4 correct expressions, ft their values from tree diagram. A1 is cso			
(e)	M1 for clear attempt to <u>use</u> the correct formula, must have some correct substitution. ft their (b)			
(f)	M1 for identifying the correct probabilities and forming appropriate fraction of probs. 1 st A1ft for a correct expression using probabilities from their tree Accept exact decimal equivalents. Correct answer only is full marks except in (c) and (d)			

Question Number	Scheme	Marks			
8.					
(a)	$P(X > 168) = P(Z > \frac{168 - 160}{5})$	M1			
(a)	$\Gamma(X > 108) - \Gamma(Z > \frac{1}{5})$	IVI I			
	= P(Z > 1.6)	A1			
	=0.0548 awrt 0.0548	A1			
		(3)			
(b)	$\mathbf{P}(\mathbf{Y} < \mathbf{w}) = \mathbf{P} \left(\mathbf{Z} < \mathbf{w} - 160 \right)$				
	$P(X < w) = P\left(Z < \frac{w - 160}{5}\right)$				
	$\frac{w-160}{5} = -2.3263$	M1 B1			
	5				
	w = 148.37 awrt 148	A1			
(0)	1.00	(3)			
(c)	$\frac{160-\mu}{\sigma} = 2.3263$	M1 B1			
	$\frac{152-\mu}{2} = -1.2816$	B1			
	$60 - \mu = 2.3263\sigma$				
	$152 - \mu = -1.2816\sigma$				
	$8 = 3.6079 \sigma$	M1			
	$\sigma = 2.21$ awrt 2.22	A1			
	$\mu = 154.84$ awrt 155	A1 (6)			
		[12]			
(a)	<u>Notes</u>				
(a)	M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm \left(\frac{168-160}{5}\right)$	or implied by 1.6			
	1^{st} A1 for P(Z > 1.6) or P(Z < -1.6) ie $z = 1.6$ and a correct inequality or 1.6 on a shaded				
	diagram Correct answer to (a) implies all 3 marks				
(b)					
	A1 for awrt 148. This may be scored for other z values so M1B0A1 is post For awrt 148 only with no working seen award M1B0A1	sible			
(c)	M1 for attempting to standardize 160 or 152 with μ and σ (allow \pm) and σ				
	(z >1)	•			
	1^{st} B1 for awrt + 2.33 or + 2.32 seen				
	2^{nd} B1 for awrt \pm 1.28 seen	,• • •			
	$2^{\rm nd}$ M1 for attempt to solve their two linear equations in μ and σ leading to	equation in just			
	one variable				
	$1^{\text{st}} \text{ A1 } \text{ for } \sigma = \text{awrt } 2.22$. Award when $1^{\text{st}} \text{ seen}$ $2^{\text{nd}} \text{ A1 } \text{ for } \mu = \text{awrt } 155$. Correct answer only for part (c) can score all 6 marks.				
	NB σ = 2.21 commonly comes from z = 2.34 and usually scores M1B0B1M1A0A1				
	The A marks in (c) require both M marks to have been earned				
	The A marks in (c) require both M marks to have been earned				