November 2012

1MA	1MA0_2H								
Qu	lestion	Working	Answer	Mark	Notes				
1		$\frac{\sqrt{20.4}}{6.2 \times 0.48} = \frac{4.5166359}{2.976}$	1.5176(868)	2	B2 for 1.5176 (B1 for sight of 4.51(66359) or 4.52 or 2.97(6) or 2.98 or 1.51 or 1.52 or 1.518 or 1.517 or 1.5177 or $\frac{\sqrt{510}}{5}$)				
2	(a)		Triangle with vertices (1, 5) (4, 5) (4,7)	2	B2 correct reflection (B1 a translation of the correct answer with the final shape above $y = x$ or any two correct vertices) SC : B1 for a triangle with vertices at (2, 5) (4, 5) (4, 8)				
	(b)		Translation by $\begin{pmatrix} -2 \\ -4 \end{pmatrix}$	2	B1 Translation B1 $\begin{pmatrix} -2 \\ -4 \end{pmatrix}$ NB. Award no marks for a combination of transformations				

1MA	.0_2H				
Qu	estion	Working	Answer	Mark	Notes
*3		3×£193.86 = £581.58 £581.58 ×0.85=£494.343	£494.34	5	 M1 3 × 193.86 (= 581.58) B1 ft correct discount % identified or used in working (may be identified in table) M1 '581.58' × '0.15' (=87.23(7)) M1 (dep on the previous M1) '581.58' - '87.23(7)' (= 494.34(3) or 494.35) C1 (dep on all method marks) for £494.34 or £494.35 identified as final answer with correct money notation OR M1 3 × 193.86 (= 581.58) B1 ft correct discount % identified or used in working (may be identified in table) M2 '581.58' × '0.85' (= 494.34(3)) (M1 '581.58' × '1.15' (=668.81(7)) C1 (dep on all method marks) for £494.34 or £494.35 identified as final answer with correct money notation NB. Throughout, values may be rounded or truncated to 2 decimal places

Sparrow 27 135 Angles $\frac{15}{72} \times 360$, $\frac{10}{72} \times 360$, $\frac{20}{72} \times 360$,A1 for 75 seen from correct working or 50 seen or 100 seen or 135 seen or one sector of angle 50° or 100° or 135° labelled	1MA0_2H						
BirdFrequencyAnglesMagpie1575Thrush1050Starling20100Sparrow27135Angles $\frac{15}{72} \times 360$, $\frac{20}{72} \times 360$, $\frac{20}{72} \times 360$,Angles $\frac{15}{72} \times 360$, $\frac{20}{72} \times 360$, $\frac{20}{72} \times 360$,	Question		Working		Answer	Mark	Notes
OR $360 \div 72 = 5 \ 5 \times 15 = 75$ etc OR M1 for $\frac{'75'}{15} \times 10$ or $\frac{'75'}{15} \times 20$ or $\frac{'75'}{15} \times 27$ ('75' should be in the range 73 - 77) A1 for 50 seen or 100 seen or 135 seen or one sector of angle 50° or 100° or 135° labelled correctly with bird's name or all sectors correctly drawn		$ Magpie Thrush Starling Sparrow Angles \frac{15}{72} \times 36 \frac{27}{72} \times 360 OR$	Frequency 15 10 20 27 60, $\frac{10}{72} \times 360, \frac{2}{7}$	75 50 100 135			M1 for any one of $\frac{15}{'72'} \times 360$, $\frac{10}{'72'} \times 360$, $\frac{20}{'72'} \times 360$, $\frac{27}{'72'} \times 360$ oe ('72' must clearly come from adding frequencies) A1 for 75 seen from correct working or 50 seen or 100 seen or 135 seen or one sector of angle 50° or 100° or 135° labelled correctly with bird's name or all sectors correctly drawn A1 for correct pie chart fully labelled with birds' names OR M1 for $\frac{'75'}{15} \times 10$ or $\frac{'75'}{15} \times 20$ or $\frac{'75'}{15} \times 27$ ('75' should be in the range 73 - 77) A1 for 50 seen or 100 seen or 135 seen or one sector of angle 50° or 100° or 135° labelled correctly with bird's name or all sectors correctly drawn A1 for correct pie chart fully labelled with birds'

1MA0_2H	1MA0_2H							
Question	Working	Answer	Mark	Notes				
5	$25 \div 50 = 0.5 h = 30 min$ $25 \div 60 = 0.416 h = 25 min$	5	3	M1 for $25 \div 50$ or $\frac{60}{50} \times 25$ or 30 (min) or $0.5(\text{h})$ or $25 \div 60$ or $\frac{60}{60} \times 25$ or 25 (min) or $0.41(6)(\text{h})$ or 0.42 (h) M1(dep) ' 0.5 ' - ' 0.416 'or ' 30 ' - ' 25 ' A1 cao OR M1 for $60 \div 25 (= 2.4)$ and $60 \div ``2.4$ " or $50 \div 25 (= 2)$ and $60 \div ``2$ " M1(dep) ' 30 ' - ' 25 ' A1 cao				

1MA0_2H				
Question	Working	Answer	Mark	Notes
	WorkingAngle $DEC = 180 - 41 = 139$ Angles on a straight line sum to 180° Angle $EDC = 60 - 38$ orAngle $ABD = 180 - 120 - 38$ (=22)Co-interior/allied angles of parallel lines sum to 180° orAngles in a triangle sum to 180° and Alternateangles $x =)180 - '139' - '22' (=19)$ Angles in a triangle sum to 180° Angle aDC = $180^{\circ} - 120^{\circ} = 60^{\circ}$ Co-interior/allied angles of parallel lines sum to 180° Angle $EDC = 22^{\circ}$ Angle $ECD = 41^{\circ} - 22^{\circ} = 19^{\circ}$ Exterior angle of triangle equals sum of the twoopposite interior anglesORAngle $DBC = 38^{\circ}$ Alternate anglesAngle $BCE = 101^{\circ}$ Angle sum of a triangleangle $BCD = 120^{\circ}$ Opposite angles of aangle $BCD = 120^{\circ} - 101^{\circ} = 19^{\circ}$	Answer $x = 19^{\circ}$ and reasons	Mark 4	NotesM1 for $DBC = 38^{\circ}$ or $ADC = 60^{\circ}$ (can be implied by $BDC = 22^{\circ}$) or $ABC = 60^{\circ}$ or $DCB = 120^{\circ}$ or $(ABD =) 180 - 120 - 38 (=22)$ M1 for $(BDC =) 60 - 38 (=22)$ or $BDC = '22'$ or $(DEC =) 180 - 41 (=139)$ or $(BCE =) 180 - 41 (=139)$ or $(BCE =) 180 - 41 - 38 (=101)$ M1 (dep on both previous M1) for complete correctmethod to find x or $(x =) 19$ C1 for $x = 19^{\circ}$ ANDCo-interior/allied angles of parallel lines sum to 180° orOpposite angles of a parallelogram are equalorAlternate anglesANDAngles on a straight line sum to 180° orExterior angle of triangle equals sum of the twoopposite interior anglesor
				<u>Angles</u> in a <u>quadrilateral</u> sum to <u>360°</u>

1MA	1MA0_2H								
Qu	estion	Working	Answer	Mark	Notes				
7		$17.8 \div 160 \times 210 = 0.11125 \times 210 = 23.3625 \text{ g}$ OR $210 \div 160 \times 17.8 = 1.3125 \times 17.8 = 23.3625 \text{ g}$ OR $210 - 160 (=50)$ $\frac{17.8}{160} \times 50' (= 5.5625)$ $17.8 + 5.5625$	23.3(625)	3	M1 17.8 ÷ 160 (=0.11125) or 17.8 × 210 (=3738) or 210 ÷ 160 (=1.3125) M1 (dep) '0.11125' × 210 or '3738'÷160 or '1.3125'×17.8 A1 for answer in range 23.3 - 23.4 OR M1 for $\frac{17.8}{160}$ × (210-160) (= 5.5625) M1 (dep) for 17.8 + '5.5625' A1 for answer in range 23.3 - 23.4 OR M1 for correct method to find weight of 2 cm or 5 cm or 10 cm M1 (dep) for complete method A1 for answer in range 23.3 - 23.4				

1MA	0_2H				
Qu	lestion	Working	Answer	Mark	Notes
8	(a)		-1, 0, 1, 2, 3	2	B2 for all 5 correct values; ignore repeats, any order (B1 for 4 correct (and no incorrect values) eg. 0, 1, 2, 3 or one additional value, eg -1 , 0, 1, 2, 3, 4)
	(b)		$-4 < x \le 3$	2	B2 for $-4 < x \le 3$ or > -4 and ≤ 3 (B1 for $-4 < x$ or $x > -4$ or $x \le 3$ or $3 \ge x$ or > -4 or ≤ 3 or $-4 \le x < 3$) NB : Accept the use of any letter
	(c)	3y - 2 > 5 $3y > 7$	$y > \frac{7}{3}$	2	M1 for clear intention to add 2 to both sides (of inequality or equation) or clear intention to divide all three terms by 3 or $3y > 7$ or $3y < 7$ or $3y = 7$ A1 $y > \frac{7}{3}$ or $y > 2\frac{1}{3}$ or $y > 2.3$ NB. final answer must be an inequality (SC B1 for $\frac{7}{3}$ oe seen if M0 scored)
9	(a)		32	1	B1 cao
	(b)	LQ = 21 UQ = 45	24	2	M1 for 45 or 21 or 43.5 or 19.5 or 7.75 th or 8 th or 23.25 th or 24 th (all of above may be seen in working space or indicated on S&L) or clear attempt to find UQ and LQ from a list of values or in stem and leaf diagram A1 cao

1MA0 2H				
Question	Working	Answer	Mark	Notes
	Working For example UK USA § per US gal (\$)6.90(8412) [\$3.15] § per litre [£1.24] (£0.56(53) § per US gal (£)4.69(96) (£)2.14(28) § per litre (\$)1.82(28) (\$)0.83(11) Cost in £ per US gal of UK fuel= £1.24 × 3.79 = £4.6996 Cost in \$ per US gal of UK fuel = \$1.47 × 4.6996 Cost in \$ per US gal of US fuel = \$1.47 × 4.6996 Cost in \$ per US gal of US fuel = \$3.15 ÷ 1.47 = £2.14 Cost in £ per litre of US fuel = \$2.14 ÷ 3.79 =£0. 56(5 OR Cost in UK in £ per US gal = £1.24 × 3.79 (=£4.6996) Cost in USA in £ per US gal = £3.15 ÷ 1.47 (=2.1428) OR Cost in UK is \$ per litre = £1.24 × 1.47 (=1.8228) Cost in USA in \$ per litre = 3.15 ÷ 3.79 (=0.8311)	Cheaper in US	4	M1 for 1.24×3.79 (= 4.6996) or 1.24×1.47 (=1.8228) M1 for $1.47 \times '4.6996'$ or $3.79 \times '1.8228'$ A1 for $6.90(8412)$ C1 (dep on M2) for \$'6.90(8412)' or \$'6.91' and reaching a conclusion consistent with their calculation OR M1 for $3.15 \div 1.47$ (=2.1428) or $3.15 \div 3.79$ (=0.8311) M1 for '2.14' $\div 3.79$ or '0.8311' $\div 1.47$ A1 for 0.56(53) C1 (dep on M2) for £'0.56(53)' or '£0.57' and reaching a conclusion consistent with their calculation OR M1 1.24×3.79 (= 4.6996) M1 $3.15 \div 1.47$ (=2.1428) A1 $4.69(96)$ and $2.14(28)$ C1 (dep on M2) for £'4.69(96)' or £'4.70' AND £'2.14(28)' and reaching a conclusion consistent with their calculation OR M1 for 1.24×1.47 (=1.8228) M1 for $3.15 \div 3.79$ (=0.8311) A1 for $1.82(28)$ and $0.83(11)$ C1 (dep on M2) for \$'1.82(28)' and \$'0.83(11)' and reaching a conclusion consistent with their calculation NB: Throughout values can be rounded or truncated to 1 or more decimal places. In order to award the communication mark, correct currency must be shown with the calculated value(s) but these can still be rounded or truncated to one or more decimal places as they are being used for comparison.

1MA	0 2H				
Qu	estion	Working	Answer	Mark	Notes
11	(a)		show	2	M1 for $x \times x \times x$ or $2 \times 5 \times x$ or vol of cube = x^3 or vol cuboid = $10x$ A1 correct completion leading to $x^3 - 10x = 100$
	(b)	x = 1 -9 $x = 2$ -2 $x = 3$ -3 $x = 4$ 24 $x = 5$ 75 $x = 6$ 156 $x = 10$ 900 $x = 5.1$ $81.(651)$ $x = 5.2$ $88.(608)$ $x = 5.3$ $95.(877)$ $x = 5.4$ $103.(464)$ $x = 5.5$ $111.(375)$ $x = 5.6$ $119.(616)$ $x = 5.7$ $128.(193)$ $x = 5.8$ $137.(112)$ $x = 5.9$ $146.(379)$ $x = 5.36$ $100.3(90656)$ $x = 5.355$ $100.0(101139)$	5.4	4	B2 for a trial $5 \le x \le 6$ evaluated correctly (B1 for any two trials evaluated correctly for positive values of <i>x</i>) B1 for a different trial $5.3 \le x \le 5.4$ evaluated correctly B1 (dep on at least one previous B1) for 5.4 Accept trials correct to the nearest whole number (rounded or truncated) if the value of <i>x</i> is to 1 d.p., but correct to 1 d.p. (rounded or truncated) if the value of <i>x</i> is to 2 or more d.p. NB. Allow 100 for a trial of $x = 5.355$

1MA	0_2H				
Qu	estion	Working	Answer	Mark	Notes
12	(a)		Correct Frequency Polygon	2	 B2 Fully correct polygon. Points plotted at the midpoint (B1 All points plotted accurately not joined, or one error in plotting but joined or all points plotted accurately and joined with, additionally, first joined to last or all points at the correct heights and consistently within or at the ends of the intervals and joined (Includes joining last to first to make a polygon)) NB: ignore polygon before 1st point, and after last point. Ignore any histograms.
	(b)		30 < <i>t</i> ≤40	1	B1 Allow any notation eg, 30-40 ft polygon
	(c)	(6+2) = 8, (4+8+14+16+6+2) = 50	$\frac{8}{50}$ oe	2	M1 $(6+2) \div (4+8+14+16+6+2)$ or ft figures from polygon or $\frac{8}{a}$ with $a > 8$ or $\frac{c}{50}$ with $c < 50$ or 8 and 50 used but notation incorrect (eg. 8:50, 8 out of 50) A1 $\frac{8}{50}$ oe (eg. 0.16) or ft figures from polygon

1MA	0 2H				
Qu	estion	Working	Answer	Mark	Notes
13		Volume = $\frac{5 \times 12}{2} \times 15$ Mass = $\frac{5 \times 12}{2} \times 15 \times 6.6$	2970	3	M1 $\frac{5 \times 12}{2} \times 15$ (=450) M1 (dep on 1 st M1) '450'×6.6 A1 cao SC: If no marks awarded then award B1 for an answer of 5940
14	(a)		x(x+7)	1	B1 cao
	(b)		(y-8)(y-2)	2	M1 $(y \pm 8)(y \pm 2)$ or $y(y-2) - 8(y-2)$ or y(y-8) - 2(y-8) A1 cao
	(c)(i)	$2t^2 + 5t + 2 = (2t+1)(t+2)$	(2t+1)(t+2)	3	M1 $(2t+2)(t+1)$ oe or $2t(t+2) + 1(t+2)$ or t(2t+1) + 2(2t+1) A1 $(2t+1)(t+2)$
	(ii)	This is always a product of two whole numbers each of which is greater than 1	Correct explanation		B1 ft from (i) for a convincing explanation referring to factors found in (i)
15		9-3=6 102-62 = 64 BC = 8 AC2 = 92 + 82 = 145	12.0	5	M2 $10^{2} - (9 - 3)^{2} (=64)$ or $BC = 8$ (M1 $9 - 3 (= 6)$ may be seen on diagram) M1 (indep) $9^{2} + 'BC'^{2}$ where <i>BC</i> is a numerical value M1 (dep on previous M1) $\sqrt{81 + '64'}$ A1 $12.0 - 12.042$

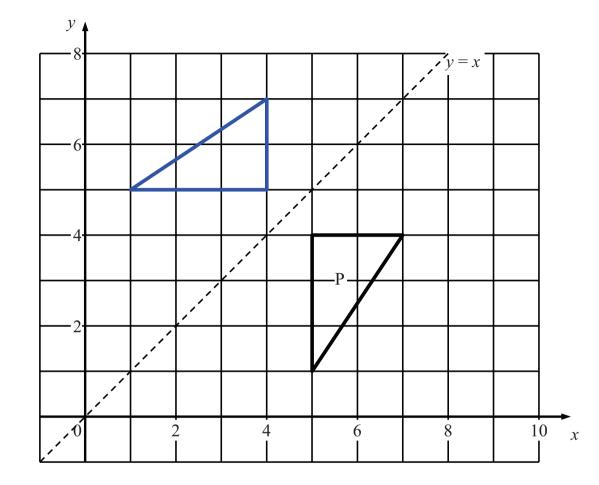
1MA0_2H				
Question	Working	Answer	Mark	Notes
Question 16	Working $\frac{64.8 - 59.3}{64.8} \times 100 \ (=8.487)$ OR $\frac{59.3}{64.8} \times 100 = 91.512$ $100 - `91.512` = 8.487)$	Answer 8.49	Mark 3	M1 $64.8 - 59.3 (=5.5)$ M1 $(dep) \frac{'5.5'}{64.8} \times 100$ oe A1 $8.48 - 8.49$ OR M1 $\frac{59.3}{64.8} \times 100$ oe $(= 91.5(12))$ M1 $(dep) 100 - 91.5'$ A1 $8.48 - 8.49$ OR
				M1 $\frac{59.3}{64.8}$ (=0.915(12)) M1 (dep) 100 × (1 - '0.915') A1 8.48 - 8.49

1MA	1MA0_2H									
Qu	estion	Working	Answer	Mark	Notes					
17		$\sin 60^\circ = \frac{x}{32} x = 32 \times \sin 60 (=27.712)$	27.7	3	M1 $\sin 60 = \frac{x}{32}$ or $\frac{x}{\sin 60} = \frac{32}{\sin 90}$ oe M1 $(x =) 32 \times \sin 60$ or $(x =) \frac{32}{\sin 90} \times \sin 60$ A1 $27.7 - 27.72$ OR M1 $\cos(90 - 60) = \frac{x}{32}$ M1 $(x =) 32 \times \cos(90 - 60)$ A1 $27.7 - 27.72$ Radians : -9.7539398 Gradians : 25.888554 SC : B2 for an answer in the range (-) 9.75 to $(-)9.754$ or 25.8 to 25.9					
18	(a)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Correct table	2	B2 all 3 correct (B1 1 or 2 correct)					
	(b)		Correct graph	2	 M1 at least 6 points plotted correctly from their table A1 cao for correct curve drawn from (0.5, 12) to (6, 1) 					

1MA0_2H				
Question	Working	Answer	Mark	Notes
19	16 metres: 8×10^8 km. 16: $8 \times 10^8 \times 1000$ 16: 8×10^{11} 1: 5×10^{10} OR 2 m to 10^8 km 2m to $100\ 000\ 000\ 000m$ 1m to $50\ 000\ 000\ 000m$	$1:5 \times 10^{10}$	3	M1 (indep) correct method to convert to consistent units M1 $\frac{'8 \times 10^8 '}{'16'}$ (units may not be consistent) or 5×10^{10} oe or 5×10^7 oe A1 $1: 5 \times 10^{10}$ or $1: 50\ 000\ 000\ 000$ OR M1 (indep) correct method to convert to consistent units M1 $\frac{'16'}{8}$ to '10 ⁸ ' A1 $1: 5 \times 10^{10}$ or $1: 50\ 000\ 000\ 000$
20	$\frac{3(x+1)}{6} + \frac{2(x+3)}{6} = \frac{3x+3+2x+6}{6}$	$\frac{5x+9}{6}$	3	M1 Use of common denominator of 6 (or any other multiple of 6) and at least one numerator correct Eg. $\frac{3(x+1)}{6}$ or $\frac{2(x+3)}{6}$ M1 $\frac{3(x+1)}{6} + \frac{2(x+3)}{6}$ oe A1 cao

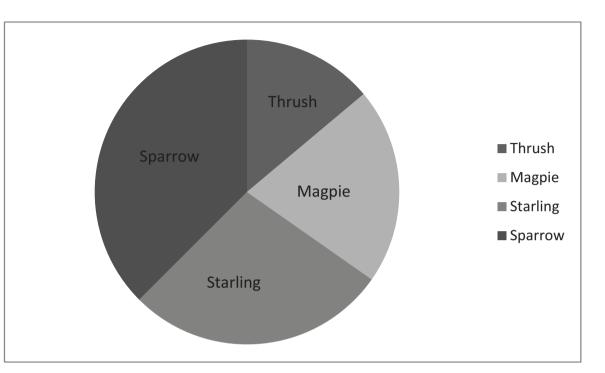
1MA	1MA0_2H											
Qu	lestion				Wo	rking	5			Answer	Mark	Notes
21	(a)	$ \begin{array}{c} \frac{2}{7} \times \frac{1}{6} \\ \text{OR} \\ \hline 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \end{array} $	$\begin{array}{c}1\\X\\\checkmark\end{array}$	$\begin{array}{c} 1 \\ \\ X \end{array}$	2 X	2 X	2 X	3 X	3	$\frac{2}{42}$	2	M1 $\frac{2}{7} \times \frac{1}{6}$ A1 $\frac{2}{42}$ oe OR M1 Fully correct sample space with the correct cases identified A1 $\frac{2}{42}$ oe SC : B1 for an answer of $\frac{4}{49}$

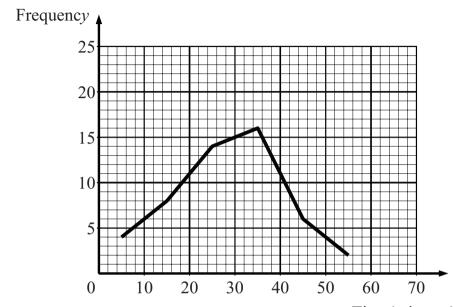
1MA	0_2H				
Qu	estion	Working	Answer	Mark	Notes
21	(b)	$ \frac{2}{7} \times \frac{5}{6} + \frac{3}{7} \times \frac{2}{6} $ OR $ \frac{1 1 2 2 3 3}{1 X \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt$	$\frac{16}{42}$		M1 for identifying all 3 possibilities of (1,2) and (1,3) and (2,3) OR at least one of $\frac{2}{7} \times \frac{3}{6}(1,2)$ or $\frac{2}{7} \times \frac{2}{6}(1,3)$ or $\frac{3}{7} \times \frac{2}{6}(2,3)$ or $\frac{2}{7} \times \frac{5}{6}(1,2 \text{ or }3)$ M1 $\frac{2}{7} \times \frac{5}{6} + \frac{3}{7} \times \frac{2}{6}$ or $\frac{2}{7} \times \frac{3}{6} + \frac{2}{7} \times \frac{2}{6} + \frac{3}{7} \times \frac{2}{6}$ A1 $\frac{16}{42}$ oe OR M2 Fully correct sample space with the correct cases identified (M1 for 1,2 and 1,3 and 2,3 identified on a sample space) A1 $\frac{16}{42}$ oe SC: B2 for an answer of $\frac{16}{49}$

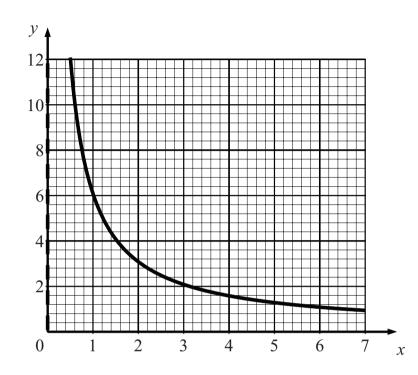

1MA	0_2H				
Qu	estion	Working	Answer	Mark	Notes
22	(a)	$x = \frac{-9 \pm \sqrt{9^2 - 4 \times 2 \times -7}}{2 \times 2} = \frac{-9 \pm \sqrt{137}}{4}$	0.676, - 5.18	3	M1 $\frac{-9 \pm \sqrt{9^2 - 4 \times 2 \times -7}}{2 \times 2}$ allow substitution of $\pm 7 \text{ for } c$ M1 $\frac{-9 \pm \sqrt{137}}{4}$ A1 answers in ranges 0.67 - 0.68 and - 5.17 to - 5.18 OR M1 $(x + \frac{9}{4})^2$ oe M1 for method leading to $\pm \sqrt{\frac{137}{16}} - \frac{9}{4}$ A1 answers in ranges 0.67 - 0.68 and - 5.17 to - 5.18
	(b)	Put $y = \frac{1}{x}$ and use part (a) Or $7y^2 - 9y - 2 = 0$ $y = \frac{9 \pm \sqrt{(-9)^2 - 4 \times 7 \times (-2)}}{2 \times 7}$ $\frac{9 \pm \sqrt{137}}{14}$	1.48, - 0.193	2	M1 $y = \frac{1}{x}$ or $x = \frac{1}{y}$ A1 (ft) answers in range 1.47 - 1.48 and - 0.19 to - 0.194 OR M1 fully correct method which leads to $7y^2 - 9y - 2 = 0$ or $-7y^2 + 9y + 2 = 0$ with correct method to solve (condone sign errors in substitution) A1 (ft) answers in range 1.47 - 1.48 and - 0.19 to - 0.194

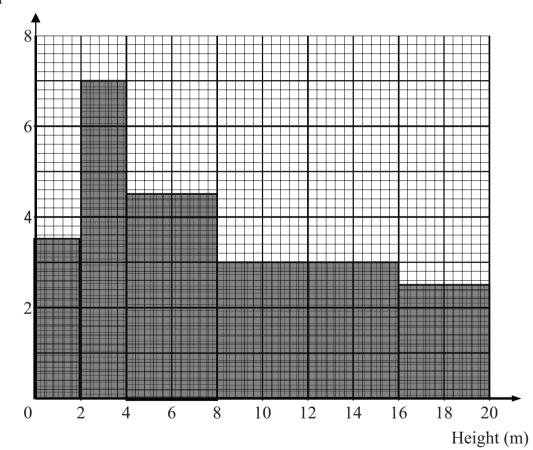
1MA	0_2H				
Qu	estion	Working	Answer	Mark	Notes
23	(a)	Let O be the centre of the base. $OB^2 + OC^2 = 10^2$; $OB^2 = 50$ $AO^2 = AB^2 - OB^2 = 50$ $Vol = \frac{1}{3} \times 10^2 \times \sqrt{50}$	236	4	M1 correct method to start to find <i>BD</i> or <i>BO</i> using triangle <i>OBC</i> or triangle <i>BCD</i> (oe) Eg. $OB^2 + OC^2 = 10^2$ or $BO^2 = 50$ or $BO = \sqrt{50}$ (=7.07) or $BO = \frac{\sqrt{200}}{2}$ or $10^2 + 10^2 = BD^2$ or $BD^2 = 200$ or $BD = \sqrt{200}$ (=14.1) M1 (dep) correct method to find height of pyramid using triangle <i>AOB</i> Eg. $AO^2 = 10^2 - \sqrt{50}^2$ or $AO^2 = 50$ or $AO = \sqrt{50}$ (=7.07) M1 (indep) $\frac{1}{3} \times 10^2 \times \sqrt{50}^2$ (but not $\frac{1}{3} \times 10^2 \times 10$) A1 235 - 236
		OR Let <i>M</i> be the midpt of side <i>BC</i> and let <i>O</i> be the centre of the base. $AM^2 + MC^2 = 10^2$; $AM^2 = 75$ $AO^2 = AM^2 - MO^2 = 50$ $Vol = \frac{1}{3} \times 10^2 \times \sqrt{50}$			OR M1 correct method to start to find height of a face using triangle AMC (oe) Eg. $AM^2 + 5^2 = 10^2$ or $AM^2 = 75$ or $AM = \sqrt{75}$ (=8.66) M1 (dep) correct method to find height of pyramid using triangle AOM Eg. $AO^2 = \sqrt[1]{75}^{12} - 5^2$ or $AO^2 = 50$ or $AO = \sqrt{50}$ (=7.07) M1 (indep) $\frac{1}{3} \times 10^2 \times \sqrt[1]{50}$ ' (but not $\frac{1}{3} \times 10^2 \times 10$) A1 235 - 236

1MA	1MA0_2H								
Que	estion	Working	Answer	Mark	Notes				
23 cont.	(a)				OR M1 for sin 45 = $\frac{x}{10}$ or cos 45 = $\frac{x}{10}$ M1 for $h = 10 \times \sin 45$ or $h = 10 \times \cos 45$ (=7.07) M1 (indep) $\frac{1}{3} \times 10^2 \times 7.07$ ' (but not $\frac{1}{3} \times 10^2 \times 10$) A1 235 - 236				


1MA0_2H									
stion	Working	Answer	Mark	Notes					
	Angle $ABO = 45^{\circ}$ Angle $DAB = 180 - 45 - 45$ OR In ΔBAD , $\cos A = \frac{10^2 + 10^2 - \sqrt{200'^2}}{2 \times 10 \times 10} = 0$ OR In ΔBOA , $\cos B = \frac{\sqrt{50'}}{10}$ Angle $BAD = 180 - 45' - 45'$ OR	Answer 90	Mark 2	Notes M1 Angle $DAB = 180 - 2 \times `45`$ A1 $89.98 - 90$ OR M1 $\cos BAD = \frac{10^2 + 10^2 - '\sqrt{200} '^2}{2 \times 10 \times 10}$ A1 $89.98 - 90$ OR M1 $\sin A = \frac{'\sqrt{50} '}{10}$ A1 $89.98 - 90$					
	$\sin A = \frac{\sqrt{50}}{10}$ $A = 45$ Angle $BAD = 2 \times 45$								
	tion	tion Working (b) Angle $ABO = 45^{\circ}$ Angle $DAB = 180 - 45 - 45$ OR In ΔBAD , $\cos A = \frac{10^2 + 10^2 - \sqrt{200}^{2}}{2 \times 10 \times 10} = 0$ OR In ΔBOA , $\cos B = \frac{\sqrt{50}}{10}$ Angle $BAD = 180 - 45^{\circ} - 45^{\circ}$ OR $\sin A = \frac{\sqrt{50}}{10}$ A = 45	tionWorkingAnswer(b)Angle $ABO = 45^{\circ}$ Angle $DAB = 180 - 45 - 45$ 90ORIn ΔBAD , $\cos A = \frac{10^2 + 10^2 - \sqrt{200'^2}}{2 \times 10 \times 10} = 0$ 90ORIn ΔBOA , $\cos B = \frac{\sqrt{50'}}{10}$ Angle $BAD = 180 - 45' - 45'$ 90ORSin $A = \frac{\sqrt{50'}}{10}$ A = 4590	tionWorkingAnswerMark(b)Angle $ABO = 45^{\circ}$ Angle $DAB = 180 - 45 - 45$ 902OR902In ΔBAD , $\cos A = \frac{10^2 + 10^2 - \sqrt{200}^{12}}{2 \times 10 \times 10} = 0$ 902OR0R1010Angle BAD , $\cos B = \frac{\sqrt{50}}{10}$ Angle $BAD = 180 - 45^{\circ} - 45^{\circ}$ 0OR $\sin A = \frac{\sqrt{50}}{10}$ $A = 45$ 90					


1MA0 2H				
Question	Working	Answer	Mark	Notes
24	Height h m Freq FD $0 < h \le 2$ 7 3.5 $2 < h \le 4$ 14 7 $4 < h \le 8$ 18 4.5 $8 < h \le 16$ 24 3 $16 < h \le 20$ 10 2.5	3	3	B3 fully correct histogram with horizontal axis correctly scaled (B2 for 4 correct blocks or 5 correct blocks with incorrect or no scale) (B1 for 2 correct blocks of different widths or any 3 correct blocks) SC : B1 for key, eg. 1 cm ² = 2 (trees) or correct values shown for (freq \div class interval) for at least 3 frequencies (3.5, 7, 4.5, 3, 2.5)
25	$A = \frac{1}{2} \times x \times 2x \times \sin 30^{\circ}$ $A = \frac{1}{2} \times 2x^{2} \times 0.5$	$x = \sqrt{2A}$ shown	3	M1 $(A =)\frac{1}{2} \times x \times 2x \times \sin 30^{\circ}$ A1 $A = x^2 \times 0.5$ or $A = \frac{x^2}{2}$ C1 for completion with all steps shown
	OR			OR M1 height = $2x\sin 30 (= x)$
	$\text{Height} = 2x \sin 30^\circ = x$			A1 $A = x^2 \times 0.5$ or $A = \frac{x^2}{2}$
	$A = \frac{x \times x}{2} = \frac{x^2}{2}$			C1 for completion with all steps shown
	OR			OR
	$\text{Height} = x \sin 30 = \frac{x}{2}$			M1 for height = $x \sin 30 \left(=\frac{x}{2}\right)$
	$A = \frac{1}{2} \times 2x \times \frac{x}{2} = \frac{x^2}{2}$			A1 $A = x^2 \times 0.5$ or $A = \frac{x^2}{2}$
				C1 for completion with all steps shown


2.


4.

Time(minutes)

Freq Den