June 2012

1MA	.0_2H				
Qu	estion	Working	Answer	Mark	Notes
1		180 – 47	133	3	M1 for $180 - 47$ A1 for 133 C1(dep on M1) for full reasons e.g. angles on a straight line add up to 180° and alternate angles are equal OR corresponding angles are equal and angles on a straight line add up to 180° OR vertically <u>opposite angles</u> (or <u>vertically opposite</u> angles) are equal and allied angles (or <u>co-interior</u> angles) add up to 180°
2	(a) (b)	$\frac{546.7}{12.5} =$	43.736	2	B2 for 43.736 (B1 for 546.7 or $\frac{5467}{10}$ or $\frac{5467}{125}$ or 12.5 or $\frac{25}{2}$ or 43.7 or 43.8 or 43.73 or 43.74 or 40 or 44) B1 for 40 or ft from their answer to (a) provided (a) is
	(0)		UT	1	written to 2 or more significant figures

1MA (1MA0_2H						
Que	estion	Working	Answer	Mark	Notes		
3	(a)		reasons	2	 1st aspect : time frame 2nd aspect : overlapping boxes 3rd aspect : not exhaustive (eg. no box for more than 4) B2 any two aspects (B1 any one aspect) 		
	(b)		How much time do you spend playing sport each week/month None 1 hr to 2 hrs 3 hrs to 5 hrs More than 5 hrs	2	 B1 for a suitable question which includes a time frame and unit (the time frame and unit could appear with the response boxes) B1 for at least 3 non-overlapping response boxes (need not be exhaustive) or at least 3 response boxes exhaustive for all integer values of their time unit (could be overlapping). [Do not allow inequalities in response boxes] 		

Question	Working	Answer	Mark	Notes
4	$\overline{\begin{array}{c cccc} x & -1 & 0 & 1 & 2 & 3 \\ \hline x & -5 & -2 & 1 & 4 & 7 \end{array}}$ OR Using $y = mx + c$ gradient = 3 y intercept = -2	Straight line from (-1, -5) to (3, 7)	3	(Table of values) M1 for at least 2 correct attempts to find points by substituting values of x. M1 ft for plotting at least 2 of their points (any points plotted from their table must be correctly plotted) A1 for correct line between -1 and 3 (No table of values) M2 for at least 2 correct points (and no incorrect points) plotted OR line segment of $y = 3x-2$ drawn (ignore any additional incorrect segments) (M1 for at least 3 correct points plotted with no more than 2 incorrect points) A1 for correct line between -1 and 3 (Use of $y = mx+c$) M2 for line segment of $y = 3x - 2$ drawn (ignore any additional incorrect segments) (M1 for line drawn with gradient of 3 OR line drawn with a y intercept of -2 and a positive gradient) A1 for correct line between -1 and 3

1MA0 2H				
Question	Working	Answer	Mark	Notes
5	$(17 - 2.8) \times 9.5 = 134.9$ $\pi \times (3.8 \div 2)^2 = 11.34$ $134.9 - 2 \times 11.34 = 112.21$ $112.21 \div 25 = 4.488$	5	5	M1 for $(17 - 2.8) \times 9.5$ (=134.9) or $17 \times 9.5 - 2.8 \times 9.5$ (= 161.5 - 26.6 = 134.9) M1 for $\pi \times (3.8 \div 2)^2$ (= 11.33 - 11.35) M1 (dep on M1) for '134.9' - 2 × '11.34' A1 for 112 - 113 C1(dep on at least M1) for 'He needs 5 boxes' ft from candidate's calculation rounded up to the next integer
6		Farm shop	4	M1 for $12.5 \div 2.5$ (=5) M1 for $5^{\circ} \times 1.83$ or $5^{\circ} \times 183$ A1 for (£)9.15 or 915(p) C1 (dep on at least M1) for decision ft working shown OR M1 for $12.5 \div 2.5$ (=5) M1 for $9 \div 5^{\circ}$ or $900 \div 5^{\circ}$ A1 for (£)1.8(0) or $180(p)$ C1 (dep on at least M1) for decision ft working shown OR M1 for $9 \div 12.5$ (=0.72) or $1.83 \div 2.5$ (=0.732) M1 for $9 \div 12.5$ (=0.72) and $1.83 \div 2.5$ (=0.732) A1 for $72(p)$ and $73.(2)(p)$ or (£)0.72 and (£)0.73(2) C1 (dep on at least M1) for decision ft working shown OR M1 for $12.5 \div 9$ (= 1.388) M1 for $2.5 \div 1.83$ (= 1.366) A1 for 1.38 and 1.36 truncated or rounded C1 (dep on at least M1) for decision ft working shown

1MA	A0_2H				
Qu	lestion	Working	Answer	Mark	Notes
7	(a)		negative	1	B1 for negative
	(b)		10.3 – 11.7	2	M1 for a single straight line segment with negative gradient that could be used as a line of best fit or an indication on the diagram from 2.5 on the <i>x</i> axis A1 for an answer in the range $10.3 - 11.7$ inclusive
8	(a)		Triangle with vertices $(2,-1) (4,-1) (4,-4)$	2	B2 for triangle with vertices $(2,-1)(4,-1)(4,-4)$ (B1 for triangle in correct orientation or rotated 90° anticlockwise centre <i>O</i>
	(b)		Triangle with vertices (7, 2) (13, 2) (7, 11)	3	B3 for triangle with vertices (7, 2) (13, 2) (7, 11) (B2 for 2 vertices correct or enlargement scale factor 3 in wrong position or enlargement, centre (1,2), with different scale factor) (B1 for 1 vertex correct or enlargement, not from (1,2), different scale factor)
9			51	3	M1 200 × 25.82 (= 5164) A1 for 5164 or 5160 or 5100 or 5200 or 51.64 or 51.6(0) or 52 A1 for 51 cao OR M1 for 100 \div 25.82 (= 3.87) and 200 \div '3.87' (= 51.64) A1 for 5164 or 5160 or 5100 or 5200 or 51.64 or 51.6(0) or 52 A1 for 51 cao

1MA	0_2H				
Qu	estion	Working	Answer	Mark	Notes
10	(a)		-1, 0, 1, 2, 3	2	B2 for all 5 correct values; ignore repeats, any order. (-1 for each omission or additional value)
	(b)	7x - 3x < 4 + 9 $4x < 13$	<i>x</i> < 3.25	2	M1 for a clear intention to use a correct operation to collect <i>x</i> terms or non- <i>x</i> terms in an (in)equality A1 for $x < 3.25$ oe
					(SC: B1 for 3.25 oe seen if M0 scored)
11		x = 4 gives 40 x = 5 gives 95 x = 4.1 gives 44.(321) x = 4.2 gives 48.(888) x = 4.3 gives 53.(707) x = 4.4 gives 58.(784) x = 4.5 gives 64.(125) x = 4.6 gives 69.(736) x = 4.7 gives 75.(623) x = 4.8 gives 81.(792) x = 4.9 gives 88.(249) x = 4.61 gives 70.3(12) x = 4.62 gives 70.8(91) x = 4.63 gives 71.4(72) x = 4.64 gives 72.0(57) x = 4.65 gives 72.6(44)	4.6	4	B2 for a trial $4.6 \le x \le 4.7$ evaluated (B1 for a trial $4 \le x \le 5$ evaluated) B1 for a different trial $4.6 < x \le 4.65$ evaluated B1 (dep on at least one previous B1) for 4.6 Accept trials correct to the nearest whole number (rounded or truncated) if the value of x is to 1 dp but correct to 1dp (rounded or truncated) if the value of x is to 2 dp. (Accept 72 for $x = 4.64$)NB : no working scores no marks even if the answer is correct.

1MA	1MA0_2H					
Qu	estion	Working	Answer	Mark	Notes	
12		0.3 × 400	120	2	M1 for 0.3×400 oe A1 cao	
13		5×3+15×8+25×11+35×9+45×9 =1130 1130 ÷ 40	28.25	4	M1 for finding fx with x consistent within intervals (including the end points) allow 1 error M1 (dep) for use of all correct mid-interval values M1 (dep on first M1) for $\Sigma fx \div 40$ or $\Sigma fx \div \Sigma f$ A1 for 28.25 or $28\frac{1}{4}$	

1MA (1MA0_2H						
Que	stion	Working	Answer	Mark	Notes		
14	(a)	$p^2 - 4p + 9p - 36$	$p^2 + 5p - 36$	2	M1 for all 4 terms correct (condone incorrect signs) or 3 out of 4 terms correct with correct signs A1 cao		
	(b)	5w - 8 = 3(4w + 2) 5w - 8 = 12w + 6 -8 - 6 = 12w - 5w -14 = 7w	-2	3	M1 for attempting to multiply both sides by 3 as a first step (this can be implied by equations of the form 5w - 8 = 12w + ? or $5w - 8 = ?w + 6$ i.e. the LHS must be correct M1 for isolating terms in w and the number terms correctly from $aw + b = cw + d$ A1 cao OR M1 for $\frac{5w}{3} - \frac{8}{3} = 4w + 2$ M1 for isolating terms in w and the number terms correctly		
					A1 cao		
	(c)		(x+7)(x-7)	1	B1 cao		
	(d)		$(x+7)(x-7)$ $3x^4y^{\frac{3}{2}}$	2	B2 for $3x^4y^{\frac{3}{2}}$ or $3x^4y^{1.5}$ or $3x^4y^{1\frac{1}{2}}$ (B1 for any two terms correct in a product eg. $3x^4y^n$)		

1MA0_2H	1MA0_2H						
Question	Working	Answer	Mark	Notes			
Question *15	Working $180 \times 365 = 65700$ $65700 \div 1000 = 65.7$ $65.7 \times 91.22 = 5993.154$ $5993.154 \div 100 + 28.20 = 88.13$ $\boxed{D \ U \ C \ T}$ $366 \ 65880 \ 6010 \ 88.30$ $365 \ 65700 \ 5993 \ 88.13$ $65000 \ 5929 \ 87.49$ $66000 \ 6020 \ 88.40$ $364 \ 65520 \ 5976 \ 87.96$ $360 \ 64800 \ 5911 \ 87.31$ $336 \ 60480 \ 5517 \ 83.37$	Answer Decision (Should have a water meter installed)	<u>Mark</u> 5	Per year M1 for $180 \times `365' (= 65700)$ M1 for $`65700' \div 1000 (= 65.7 \text{ or } 65 \text{ or } 66)$ M1 for $`65.7' \times 91.22 (= 5993)$ A1 for answer in range (£)87 to (£)89 C1 (dep on at least M1) for conclusion following from working seen OR (per day) M1 for $107 \div `365' (= 0.293)$ M1 for $107 \div `365' (= 0.293)$ M1 for $180 \div 1000 \times 91.22 (= 16.4196)$ M1 for $28.2 \div `365' + `0.164196'$ (units must be consistent) A1 for $29 - 30(p)$ and $24 - 24.3(p)$ oe C1 (dep on at least M1) for conclusion following from working seen OR M1 for $(107 - 28.20) \div 0.9122 (= 86.384)$ M1 for $`365' \times 180 (= 65700)$ A1 for $c5700$ and 86384.5 C1 (dep on at least M1) for conclusion following from working seen OR M1 for $(107 - 28.20) \div 0.9122 (= 86.384)$ M1 for $`65.700$ and 86384.5 C1 (dep on at least M1) for conclusion following from working seen NB : Allow 365 or 366 or $52 \times 7 (= 364)$ or 12×30			
				$(=360)$ or $365\frac{1}{4}$ for number of days			

1MA0_2H	1MA0 2H						
Question	Working	Answer	Mark	Notes			
16	$\cos x = \frac{6.4}{9.6}$	48.2	3	M1 for $\cos x = \frac{6.4}{9.6}$ or $\cos x = 0.66(6)$ or $\cos x = 0.67$			
	$x = \cos^{-1} \frac{6.4}{9.6} =$			M1 for $\cos^{-1}\frac{6.4}{9.6}$ or $\cos^{-1} 0.66(6)$ or $\cos^{-1} 0.67$			
				A1 for 48.1 – 48.2			
				OR Correct use of Pythagoras and then trigonometry, no marks until			
				M1 for sin $x = \frac{'7.155'}{9.6}$ or tan $x = \frac{'7.155'}{6.4}$			
				or $\sin x = \frac{'7.155'}{9.6} \times \sin 90$			
				or $\cos x = \frac{6.4^2 + 9.6^2 - 7.155'^2}{2 \times 6.4 \times 9.6}$			
				M1 for $\sin^{-1} \frac{'7.155'}{9.6}$ or $\tan^{-1} \frac{'7.155'}{6.4}$			
				or $\sin^{-1}\left(\frac{'7.155'}{9.6} \times \sin 90\right)$			
				or $\cos^{-1}\left(\frac{6.4^2 + 9.6^2 - 7.155'^2}{2 \times 6.4 \times 9.6}\right)$			
				A1 for 48.1 – 48.2			
				SC B2 for 0.841 (using rad) or 53.5 (using grad)			

1MA0_2H	1MA0_2H						
Question	Working	Answer	Mark	Notes			
17	$6200 \times 1.025^{3} =$ OR $6200 + \frac{2.5}{100} \times 6200 = 6355$ $6355 + \frac{2.5}{100} \times 6355 = 6513.875$ $6513.875 + \frac{2.5}{100} \times 6513.875 =$	6676.72	3	M2 for 6200×1.025^{3} (= 6676.72) (M1 for 6200×1.025^{n} , $n \neq 3$) A1 for 6676.72 , accept 6676.71 or 6676.73 OR M1 for 6200×1.025 or for $6200 + \frac{2.5}{100} \times 6200$ oe or for 6355 or 155 or 465 or 6665 M1 (dep) for a complete compound interest method shown for 3 years A1 for 6676.72 , accept 6676.71 or 6676.73 [SC B2 for 476.71 or 476.72 or 476.73 seen]			

1MA0_2H	1MA0_2H					
Question	Working	Answer	Mark	Notes		
—	Working $BD^2 + 12^2 = 16^2$ oe $BD = \sqrt{256 - 144}$ (=10.58) $\sin 40 = \frac{'10.58'}{CD}$ $CD = \frac{'10.58'}{\sin 40}$	Answer 16.5	Mark 5	Notes M1 for $BD^2 + 12^2 = 16^2$ oe or $16^2 - 12^2$ or 112 seen M1 for $\sqrt{256 - 144}$ or $\sqrt{112}$ (=10.58) M1 for sin $40 = \frac{'10.58'}{CD}$ or cos $50 = \frac{'10.58'}{CD}$ M1 for $(CD =)$ $\frac{'10.58'}{\sin 40}$ or $\frac{'10.58'}{\cos 50}$ A1 for $16.4 - 16.5$ OR M1 for $\sqrt{256 - 144}$ or $\sqrt{112}$ (=10.58) M1 for $\sqrt{256 - 144}$ or $\sqrt{112}$ (=10.58) M1 for $BD^2 + 12^2 = 16^2$ oe or $16^2 - 12^2$ or 112 seen M1 for $\sqrt{256 - 144}$ or $\sqrt{112}$ (=10.58) M1 for $(BC =)$ '10.58'× tan 50 or $\frac{'10.58'}{tan 40}$ (=12.6)		
				$\begin{array}{c} \text{M1 for } (BC^{-1})^{-10.56} + \tan 50 \text{ of } \tan 40 \\ \text{M1 for } \sqrt{12.6^{2} + 10.58^{2}} \\ \text{A1 for } 16.4 - 16.5 \end{array}$		

1MA0_2H						
Question	Working	Answer	Mark	Notes		
19	$ \sqrt{\frac{8.5 \times 10^9 - 4 \times 10^8}{8.5 \times 10^9 \times 4 \times 10^8}} = \sqrt{\frac{8.1 \times 10^9}{3.4 \times 10^{18}}} = \sqrt{2.3823529 \times 10^{-9}} $ OR $ \sqrt{\frac{1}{4 \times 10^8} - \frac{1}{8.5 \times 10^9}} = \sqrt{2.5 \times 10^{-9} - 1.17647 \times 10^{-10}} = \sqrt{2.3823529 \times 10^{-9}} $	4.9 × 10 ⁻⁵	3	B3 for 4.88×10^{-5} to 4.9×10^{-5} (B2 for digits 238(23529) or 24 or 488(09353) or 49) (B1 for digits 81 or 34) OR B3 for 4.88×10^{-5} to 4.9×10^{-5} (B2 for digits 238(23529) or 24 or 488(09353) or 49) (B1 for digits 25 or 117(647))		
20	2d - 2t = 4t + 7 2d - 7 = 4t + 2t 2d - 7 = 6t $\frac{2d - 7}{6}$	$\frac{2d-7}{6}$	3	B1 for $2d - 2t$ or $2t + \frac{7}{2}$ oe M1 for rearranging 4 terms correctly to isolate terms in t e.g. $2d' - 7 = 4t + 2t'$ or $2d - 7 = 6t$ or $-6t = 7 - 2d$ seen A1 for $\frac{2d - 7}{6}$ oe		
21	$ \begin{array}{r} 4n^2 + 12n + 3^2 - (4n^2 - 12n + 3^2) \\ = 4n^2 + 12n + 9 - 4n^2 + 12n - 9 \\ = 24n \\ = 8 \times 3n \end{array} $	Proof	3	M1 for 3 out of 4 terms correct in expansion of either $(2n+3)^2$ or $(2n-3)^2$ or $((2n+3) - (2n-3))((2n+3) + (2n-3))$ A1 for 24 <i>n</i> from correct expansion of both brackets A1 (dep on A1) for 24 <i>n</i> is a multiple of 8 or $24n = 8 \times 3n$ or $24n \div 8 = 3n$		

1MA0_2H						
Question	Working	Answer	Mark	Notes		
22	$a = 3, b = -4, c = -2$ $x = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 3 \times -2}}{2 \times 3}$ $= \frac{4 \pm \sqrt{16 + 24}}{6} = \frac{4 \pm \sqrt{40}}{6}$ $= 1.72075922$ or $= -0.3874258867$ OR $x^2 - \frac{4}{3}x - \frac{2}{3} = 0$ $\left(x - \frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^2 - \frac{2}{3} = 0$ $x - \frac{2}{3} = \sqrt{\left(\frac{2}{3}\right)^2 + \frac{2}{3}}$ $x = \frac{2}{3} \pm \sqrt{\frac{10}{9}}$	1.72, -0.387	3	M1 for $\frac{4 \pm \sqrt{(-4)^2 - 4 \times 3 \times -2}}{2 \times 3}$ (condone incorrect signs for -4 and -2) M1 for $\frac{4 \pm \sqrt{40}}{6}$ or $\frac{2 \pm \sqrt{10}}{3}$ A1 for one answer in the range 1.72 to 1.721 and one answer in the range - 0.387 to - 0.38743 OR M1 for $\left(x - \frac{2}{3}\right)^2$ oe M1 for method leading to $\frac{2}{3} \pm \sqrt{\frac{10}{9}}$ oe A1 for one answer in the range 1.72 to 1.721 and one answer in the range - 0.387 to - 0.38743		

1MA	1MA0_2H						
Qu	lestion	Working	Answer	Mark	Notes		
23	(a)(i)	Explanation : Each member of the population has an equal chance of selection	Each member of the population has an equal chance of selection	2	B1 for explanation		
	(ii)	Description : Eg. number each student and use random select on a calculator	Valid method		B1 for an acceptable description		
	(b)	$239+257+248+190+206=1140$ $\frac{239}{1140}\times100$	21	2	M1 for $\frac{239}{'1140'} \times 100$ oe or 20.96 A1 cao		

1MA0_2H					
Question	Working	Answer	Mark	Notes	
24	$\frac{AC}{\sin 49} = \frac{8.7}{\sin 64}$ $AC = \frac{8.7}{\sin 64} \times \sin 49$ (= 7.305) $\frac{1}{2} \times 8.7 \times 7.305 \times \sin (180 - 64 - 49)$	29.3	5	Notes M1 for $\frac{AC}{\sin 49} = \frac{8.7}{\sin 64}$ oe M1 for $(AC =) \frac{8.7}{\sin 64} \times \sin 49$ A1 for 7.3(05) M1 for $\frac{1}{2} \times 8.7 \times `7.305' \times \sin(180 - 64 - 49)$ A1 for 29.19 - 29.3 OR M1 for $\frac{BC}{\sin(180 - 64 - 49)} = \frac{8.7}{\sin 64}$ oe M1 for $(BC =) \frac{8.7}{\sin 64} \times \sin'67'$ A1 for 8.9(10) M1 for $\frac{1}{2} \times 8.7 \times `8.910' \times \sin 49$ A1 for 29.19 - 29.3 OR M1 for $\frac{1}{2} \times 8.7 \times `8.910' \times \sin 49$ A1 for 29.19 - 29.3 OR (X is point such that AX is perpendicular to BC) M1 for $AX = 8.7 \times \sin 49$ (= 6.565) or $XB = 8.7 \times \cos 49$ (= 5.707) M1 for $8.9(10)$ or $5.7(07)$ and $CX = `6.565' \div \tan 64$ oe (= 3.202) A1 for $8.9(10)$ or $5.7(07)$ and $3.2(02)$ M1 for $\frac{1}{2} \times 6.565 \times (`5.707' + `3.202')$ oe	

1MA0_2H						
Question	Working	Answer	Mark	Notes		
Question 25	Working $\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{2}{19}$ $1 - \left(\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{2}{19}\right)$	Answer 222 380	<u>Mark</u>	Notes B1 for $\frac{12}{19}$ or $\frac{5}{19}$ or $\frac{3}{19}$ (could be seen in working or on a tree diagram) M1 for $\frac{12}{20} \times \frac{5}{19} - \frac{12}{20} \times \frac{3}{19} - \frac{5}{20} \times \frac{12}{19} - \frac{5}{20} \times \frac{3}{19} - \frac{3}{20} \times \frac{5}{19} - \frac{3}{20} \times \frac{12}{19} - \frac{3}{20} \times \frac{5}{19} - \frac{3}{20} \times \frac{12}{19} - \frac{3}{20} \times \frac{5}{19} - \frac{3}{20} \times \frac{17}{19}$ Notes M1 for $\frac{12}{20} \times \frac{8}{19} - \frac{5}{20} \times \frac{15}{19} - \frac{3}{20} \times \frac{17}{19} - \frac{3}{20} \times \frac{17}{19}$ A1 for $\frac{222}{20}$ oe or $0.58(421)$ OR B1 for $\frac{12}{19} \times \frac{8}{19} - \frac{5}{20} \times \frac{15}{19} - \frac{7}{20} \times \frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19} + \frac{5}{20} \times \frac{15}{19} + \frac{3}{20} \times \frac{17}{19}$ M1 for $\frac{12}{20} \times \frac{8}{19} + \frac{5}{20} \times \frac{15}{19} + \frac{3}{20} \times \frac{17}{19}$ A1 for $\frac{222}{380}$ oe or $0.58(421)$		
				OR (continued overleaf)		

1MA0_2H						
Question	Working	Answer	Mark	Notes		
	Working	Answer	Mark	B1 for $\frac{11}{19}$ or $\frac{4}{19}$ or $\frac{2}{19}$ M1 for $\frac{12}{20} \times \frac{11}{19}$ or $\frac{5}{20} \times \frac{4}{19}$ or $\frac{3}{20} \times \frac{2}{19}$ M1 for $1 - \left(\frac{12}{20} \times \frac{11}{19} + \frac{5}{20} \times \frac{4}{19} + \frac{3}{20} \times \frac{2}{19}\right)$ A1 for $\frac{222}{380}$ oe or 0.58(421) NB if decimals used they must be correct to at least 2 decimal places SC : with replacement B2 for $\frac{111}{200}$ oe OR		
				e.g. B0 M1 for $\frac{12}{20} \times \frac{8}{20}$ or $\frac{5}{20} \times \frac{15}{20}$ or $\frac{3}{20} \times \frac{17}{20}$ M1 for $\frac{12}{20} \times \frac{8}{20} + \frac{5}{20} \times \frac{15}{20} + \frac{3}{20} \times \frac{17}{20}$		
				A0		

1MA0	1MA0_2H						
Que	stion	Working	Answer	Mark	Notes		
26	(a)		b – a	1	B1 for $\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + \mathbf{b}$		
	(u) (b)	$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$ $\overrightarrow{AP} = \frac{3}{4} \times (\mathbf{b} - \mathbf{a})$ $\overrightarrow{OP} = \mathbf{a} + \frac{3}{4} \times (\mathbf{b} - \mathbf{a})$ OR $\overrightarrow{OP} = \overrightarrow{OB} + \overrightarrow{BP}$ $\overrightarrow{BP} = \frac{1}{4} \times (\mathbf{a} - \mathbf{b})$ $\overrightarrow{OP} = \mathbf{b} + \frac{1}{4} \times (\mathbf{a} - \mathbf{b})$	$\frac{1}{4}(\mathbf{a}+3\mathbf{b})$	3	B) for $\mathbf{b} \cdot \mathbf{a}$ or $\mathbf{a} + \mathbf{b}$ B1 for $\frac{3}{4} \times \mathbf{b} - \mathbf{a}$ M1 for $(\overrightarrow{OP} =) \overrightarrow{OA} + \overrightarrow{AP}$ or $(\overrightarrow{OP} =) \overrightarrow{OA} + \frac{3}{4} \overrightarrow{AB}$ or $\mathbf{a} \pm \frac{3}{4} \times \mathbf{b} - \mathbf{a}$ A1 for $\frac{1}{4} (\mathbf{a} + 3\mathbf{b})$ or $\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$ OR B1 for $\frac{1}{4} \times \mathbf{a} - \mathbf{b}$ M1 for $(\overrightarrow{OP} =) \overrightarrow{OB} + \overrightarrow{BP}$ or $(\overrightarrow{OP} =) \overrightarrow{OB} + \frac{1}{4} \overrightarrow{BA}$ or $\mathbf{b} \pm \frac{1}{4} \times \mathbf{a} - \mathbf{b}$ A1 for $\frac{1}{4} (\mathbf{a} + 3\mathbf{b})$ or $\frac{1}{4}\mathbf{a} + \frac{3}{4}\mathbf{b}$		