\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{1MA0_2H} \\
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline 1 \& \& 180-47 \& 133 \& 3 \& \begin{tabular}{l}
M1 for 180-47 \\
A1 for 133 \\
C 1 (dep on M 1 ) for full reasons e.g. \\
angles on a straight line add up to \(180^{\circ}\) and alternate \\
angles are equal \\
OR \\
corresponding angles are equal and angles on a straight line add up to \(\underline{180^{\circ}}\) \\
OR \\
vertically opposite angles (or vertically opposite angles) are equal and allied angles (or co-interior angles) add up to \(180^{\circ}\)
\end{tabular} \\
\hline 2 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \[
\frac{546.7}{12.5}=
\] \& \[
43.736
\]
\[
40
\] \& 2

1 \& | B2 for 43.736 |
| :--- |
| (B1 for 546.7 or $\frac{5467}{10}$ or $\frac{5467}{125}$ or 12.5 or $\frac{25}{2}$ or 43.7 or 43.8 or 43.73 or 43.74 or 40 or 44) |
| B1 for 40 or ft from their answer to (a) provided (a) is written to 2 or more significant figures | \\

\hline
\end{tabular}

| 1MA0_2H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 3 | (a) |  | reasons | 2 | $1^{\text {st }}$ aspect : time frame <br> $2^{\text {nd }}$ aspect: overlapping boxes <br> $3^{\text {rd }}$ aspect : not exhaustive (eg. no box for more than 4) <br> B2 any two aspects <br> (B1 any one aspect) |
|  | (b) |  | How much time do you spend playing sport each week/month <br> None <br> 1 hr to 2 hrs <br> 3 hrs to 5 hrs <br> More than 5 hrs | 2 | B1 for a suitable question which includes a time frame and unit (the time frame and unit could appear with the response boxes) <br> B1 for at least 3 non-overlapping response boxes (need not be exhaustive) or at least 3 response boxes exhaustive for all integer values of their time unit (could be overlapping). <br> [Do not allow inequalities in response boxes] |



| 1MA0_2H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 5 |  | $\begin{aligned} & (17-2.8) \times 9.5=134.9 \\ & \pi \times(3.8 \div 2)^{2}=11.34 \ldots \\ & 134.9-2 \times 11.34 \ldots=112.21 \\ & 112.21 \div 25=4.488 \end{aligned}$ | 5 | 5 | M1 for $(17-2.8) \times 9.5$ ( $=134.9$ ) or $17 \times 9.5-2.8 \times 9.5(=161.5-26.6=134.9)$ <br> M1 for $\pi \times(3.8 \div 2)^{2}(=11.33-11.35)$ <br> M1 (dep on M1) for ' 134.9 ' $-2 \times$ ' 11.34 ' <br> A1 for 112-113 <br> C1 (dep on at least M1) for 'He needs 5 boxes' ft from candidate's calculation rounded up to the next integer |
| 6 |  |  | Farm shop | 4 | M1 for $12.5 \div 2.5$ (=5) <br> M1 for ' 5 ' $\times 1.83$ or ' 5 ' $\times 183$ <br> A1 for (£) 9.15 or $915(p)$ <br> C1 (dep on at least M1) for decision ft working shown <br> OR <br> M1 for $12.5 \div 2.5(=5)$ <br> M1 for $9 \div$ ' 5 ' or $900 \div$ ' 5 ' <br> A1 for (£)1.8(0) or $180(\mathrm{p})$ <br> C 1 (dep on at least M1) for decision ft working shown <br> OR <br> M1 for $9 \div 12.5(=0.72)$ or $1.83 \div 2.5(=0.732)$ <br> M1 for $9 \div 12.5(=0.72)$ and $1.83 \div 2.5(=0.732)$ <br> A1 for $72(\mathrm{p})$ and 73.(2)(p) or $(\mathfrak{£}) 0.72$ and (£)0.73(2) <br> C1 (dep on at least M1) for decision ft working shown <br> OR <br> M1 for $12.5 \div 9$ (= $1.388 \ldots$...) <br> M1 for $2.5 \div 1.83$ (= 1.366...) <br> A1 for $1.38 \ldots$ and $1.36 \ldots$ truncated or rounded <br> C 1 (dep on at least M1) for decision ft working shown |



| 1MA0_2H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 10 | (a) |  | $-1,0,1,2,3$ | 2 | B2 for all 5 correct values; ignore repeats, any order. ( -1 for each omission or additional value) |
|  | (b) | $\begin{aligned} & 7 x-3 x<4+9 \\ & 4 x<13 \end{aligned}$ | $x<3.25$ | 2 | M1 for a clear intention to use a correct operation to collect $x$ terms or non- $x$ terms in an (in)equality A1 for $x<3.25$ oe <br> (SC: B1 for 3.25 oe seen if M0 scored) |
| 11 |  | $\begin{aligned} & x=4 \text { gives } 40 \\ & x=5 \text { gives } 95 \\ & x=4.1 \text { gives } 44 .(321) \\ & x=4.2 \text { gives } 48 .(888) \\ & x=4.3 \text { gives } 53 .(707) \\ & x=4.4 \text { gives } 58 .(784) \\ & x=4.5 \text { gives } 64 .(125) \\ & x=4.6 \text { gives } 69 .(736) \\ & x=4.7 \text { gives } 75 .(623) \\ & x=4.8 \text { gives } 81 .(792) \\ & x=4.9 \text { gives } 88 .(249) \\ & x=4.61 \text { gives } 70.3(12 . .) \\ & x=4.62 \text { gives } 70.8(91 . .) \\ & x=4.63 \text { gives } 71.4(72 . .) \\ & x=4.64 \text { gives } 72.0(57 . .) \\ & x=4.65 \text { gives } 72.6(44 . .) \end{aligned}$ | 4.6 | 4 | B2 for a trial $4.6 \leq x \leq 4.7$ evaluated <br> (B1 for a trial $4 \leq x \leq 5$ evaluated) <br> B1 for a different trial $4.6<x \leq 4.65$ evaluated <br> B1 (dep on at least one previous B1) for 4.6 <br> Accept trials correct to the nearest whole number (rounded or truncated) if the value of $x$ is to 1 dp but correct to 1 dp (rounded or truncated) if the value of $x$ is to 2 dp . <br> (Accept 72 for $x=4.64$ ) <br> NB : no working scores no marks even if the answer is correct. |


| 1MA0_2H | Working | Answer | Mark | Notes |  |
| :---: | :--- | :--- | :---: | :---: | :--- |
| Question |  | $0.3 \times 400$ | 120 | M1 for $0.3 \times 400$ oe <br> A1 cao |  |
| 12 |  | $5 \times 3+15 \times 8+25 \times 11+35 \times 9+45 \times 9$ <br> $=1130$ <br> $1130 \div 40$ | 28.25 | 4 | M1 for finding $f x$ with $x$ consistent within intervals <br> (including the end points) allow 1 error <br> M1 (dep) for use of all correct mid-interval values <br> M1 (dep on first M1) for $\Sigma f x \div 40$ or $\Sigma f x \div \Sigma f$ |
| 13 |  |  | A1 for 28.25 or $28 \frac{1}{4}$ |  |  |


| 1MA0_2H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 14 | (a) | $p^{2}-4 p+9 p-36$ | $p^{2}+5 p-36$ | 2 | M1 for all 4 terms correct (condone incorrect signs) or 3 out of 4 terms correct with correct signs A1 cao |
|  | (b) | $\begin{aligned} & 5 w-8=3(4 w+2) \\ & 5 w-8=12 w+6 \\ & -8-6=12 w-5 w \\ & -14=7 w \end{aligned}$ | -2 | 3 | M1 for attempting to multiply both sides by 3 as a first step (this can be implied by equations of the form $5 w-8=12 w+?$ or $5 w-8=? w+6$ i.e. the LHS must be correct <br> M1 for isolating terms in $w$ and the number terms correctly from $a w+b=c w+d$ <br> A1 cao <br> OR <br> M1 for $\frac{5 w}{3}-\frac{8}{3}=4 w+2$ <br> M1 for isolating terms in $w$ and the number terms correctly <br> A1 cao |
|  | (c) |  | $(x+7)(x-7)$ | 1 | B1 cao |
|  | (d) |  | $3 x^{4} y^{\frac{3}{2}}$ | 2 | $\text { B2 for } 3 x^{4} y^{\frac{3}{2}} \text { or } 3 x^{4} y^{1.5} \text { or } 3 x^{4} y^{\frac{1}{2}}$ <br> (B1 for any two terms correct in a product eg. $3 x^{4} y^{n}$ ) |




| 1MA0_2H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 17 |  | $\begin{aligned} & 6200 \times 1.025^{3}= \\ & \text { OR } \\ & 6200+\frac{2.5}{100} \times 6200=6355 \\ & 6355+\frac{2.5}{100} \times 6355=6513.875 \\ & 6513.875+\frac{2.5}{100} \times 6513.875= \end{aligned}$ | 6676.72 | 3 | M2 for $6200 \times 1.025^{3}$ (= $6676.72 \ldots$ ) <br> (M1 for $6200 \times 1.025^{n}, n \neq 3$ ) <br> A1 for 6676.72, accept 6676.71 or 6676.73 <br> OR <br> M1 for $6200 \times 1.025$ <br> or for $6200+\frac{2.5}{100} \times 6200$ oe <br> or for 6355 or 155 or 465 or 6665 <br> M1 (dep) for a complete compound interest method shown for 3 years <br> A1 for 6676.72 , accept 6676.71 or 6676.73 <br> [SC B2 for 476.71 or 476.72 or 476.73 seen ] |


| 1MA0_2H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 18 |  | $\begin{aligned} & B D^{2}+12^{2}=16^{2} \text { oe } \\ & \mathrm{BD}=\sqrt{256-144} \\ & (=10.58 \ldots) \\ & \sin 40=\frac{\prime 10.58^{\prime}}{C D} \\ & C D=\frac{10.58^{\prime}}{\sin 40} \end{aligned}$ | 16.5 | 5 | M1 for $B D^{2}+12^{2}=16^{2}$ oe or $16^{2}-12^{2}$ or 112 seen M1 for $\sqrt{256-144}$ or $\sqrt{112}(=10.58 \ldots)$ <br> M1 for $\sin 40=\frac{' 10.58 '}{C D}$ or $\cos 50=\frac{' 10.58^{\prime}}{C D}$ <br> M1 for $(C D=) \frac{' 10.58^{\prime}}{\sin 40}$ or $\frac{{ }^{\prime} 10.58^{\prime}}{\cos 50}$ <br> A1 for 16.4 - 16.5 <br> OR <br> M1 for $B D^{2}+12^{2}=16^{2}$ oe or $16^{2}-12^{2}$ or 112 seen M1 for $\sqrt{256-144}$ or $\sqrt{112}(=10.58$..) <br> M1 for $(B C=)^{\prime} 10.58^{\prime} \times \tan 50$ or $\frac{10.58^{\prime}}{\tan 40}(=12.6 \ldots)$ M1 for $\sqrt{12.6^{\prime 2}+{ }^{\prime} 10.58 \ldots . .{ }^{\prime 2}}$ <br> A1 for $16.4-16.5$ |


| 1MA0_2H |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Working | Answer | Mark | Notes |
| 19 | $\begin{aligned} & \sqrt{\frac{8.5 \times 10^{9}-4 \times 10^{8}}{8.5 \times 10^{9} \times 4 \times 10^{8}}} \\ & =\sqrt{\frac{8.1 \times 10^{9}}{3.4 \times 10^{18}}} \\ & =\sqrt{2.3823529 \ldots \times 10^{-9}} \end{aligned}$ <br> OR $\begin{aligned} & \sqrt{\frac{1}{4 \times 10^{8}}-\frac{1}{8.5 \times 10^{9}}} \\ & =\sqrt{2.5 \times 10^{-9}-1.17647 \times 10^{-10}} \\ & =\sqrt{2.3823529 \ldots \times 10^{-9}} \end{aligned}$ | $4.9 \times 10^{-5}$ | 3 | B3 for $4.88 \times 10^{-5}$ to $4.9 \times 10^{-5}$ <br> (B2 for digits 238(23529) or 24 or 488(09353) or 49) <br> (B1 for digits 81 or 34 ) <br> OR <br> B3 for $4.88 \times 10^{-5}$ to $4.9 \times 10^{-5}$ <br> (B2 for digits 238(23529) or 24 or 488(09353) or 49) <br> (B1 for digits 25 or 117(647)) |
| 20 | $\begin{aligned} & 2 d-2 t=4 t+7 \\ & 2 d-7=4 t+2 t \\ & 2 d-7=6 t \\ & \frac{2 d-7}{6} \end{aligned}$ | $\frac{2 d-7}{6}$ | 3 | B1 for $2 d-2 t$ or $2 t+\frac{7}{2}$ oe <br> M1 for rearranging 4 terms correctly to isolate terms in $t$ e.g. ' $2 d$ ' $-7=4 t+{ }^{\prime} 2 t$ ' or $2 d-7=6 t$ or $-6 t=7-2 d$ seen <br> A1 for $\frac{2 d-7}{6}$ oe |
| 21 | $\begin{aligned} & 4 n^{2}+12 n+3^{2}-\left(4 n^{2}-12 n+3^{2}\right) \\ & =4 n^{2}+12 n+9-4 n^{2}+12 n-9 \\ & =24 n \\ & =8 \times 3 n \end{aligned}$ | Proof | 3 | M1 for 3 out of 4 terms correct in expansion of either $(2 n+3)^{2}$ or $(2 n-3)^{2}$ $\text { or }((2 n+3)-(2 n-3))((2 n+3)+(2 n-3))$ <br> A1 for $24 n$ from correct expansion of both brackets A1 (dep on A1) for $24 n$ is a multiple of 8 or $24 n=8 \times 3 n \text { or } 24 n \div 8=3 n$ |



| 1MA0_2H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 23 | (a)(i) | Explanation : Each member of the population has an equal chance of selection | Each member of the population has an equal chance of selection | 2 | B1 for explanation |
|  | (ii) | Description : Eg. number each student and use random select on a calculator | Valid method |  | B1 for an acceptable description |
|  | (b) | $\begin{aligned} & 239+257+248+190+206=1140 \\ & \frac{239}{1140} \times 100 \end{aligned}$ | 21 | 2 | $\text { M1 for } \frac{239}{{ }^{1140^{\prime}}} \times 100 \text { oe or } 20.96 \ldots$ A1 cao |


| 1MA0_2H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 24 |  | $\begin{aligned} & \frac{A C}{\sin 49}=\frac{8.7}{\sin 64} \\ & A C=\frac{8.7}{\sin 64} \times \sin 49 \\ & (=7.305 \ldots) \\ & \frac{1}{2} \times 8.7 \times 7.305 \ldots \times \sin (180-64-49) \end{aligned}$ | 29.3 | 5 | M1 for $\frac{A C}{\sin 49}=\frac{8.7}{\sin 64}$ oe <br> M1 for $(A C=) \frac{8.7}{\sin 64} \times \sin 49$ <br> A1 for $7.3(05 \ldots)$ <br> M1 for $\frac{1}{2} \times 8.7 \times{ }^{\prime} 7.305^{\prime} \times \sin (180-64-49)$ <br> A1 for 29.19-29.3 <br> OR <br> M1 for $\frac{B C}{\sin (180-64-49)}=\frac{8.7}{\sin 64}$ oe <br> M1 for $(B C=) \frac{8.7}{\sin 64} \times \sin ^{\prime} 67^{\prime}$ <br> A1 for 8.9(10...) <br> M1 for $\frac{1}{2} \times 8.7 \times{ }^{\prime} 8.910^{\prime} \times \sin 49$ <br> A1 for 29.19-29.3 <br> OR <br> ( $X$ is point such that $A X$ is perpendicular to $B C$ ) <br> M1 for $A X=8.7 \times \sin 49(=6.565 \ldots)$ or $X B=8.7 \times \cos 49(=5.707 \ldots)$ <br> M1 for $X B=8.7 \times \cos 49(=5.707 \ldots)$ and $C X=‘ 6.565$ ' $\div \tan 64$ oe $(=3.202 \ldots)$ <br> A1 for $8.9(10 \ldots$...) or $5.7(07 \ldots)$ and $3.2(02 \ldots)$ <br> M1 for $1 / 2 \times$ ‘ $6.565 \ldots$... $\times\left({ }^{\prime} 5.707\right.$ ' + ' $3.202^{\prime}$ ) oe <br> A1 for 29.19-29.3 |


| 1MA0_2H |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Question |  | Working | Answer | Mark | Notes |
| 25 |  | $\begin{aligned} & \frac{12}{20} \times \frac{11}{19}+\frac{5}{20} \times \frac{4}{19}+\frac{3}{20} \times \frac{2}{19} \\ & 1-\left(\frac{12}{20} \times \frac{11}{19}+\frac{5}{20} \times \frac{4}{19}+\frac{3}{20} \times \frac{2}{19}\right) \end{aligned}$ | $\frac{222}{380}$ | 4 | B1 for $\frac{12}{19}$ or $\frac{5}{19}$ or $\frac{3}{19}$ (could be seen in working or on a tree diagram) <br> M1 for $\frac{12}{20} \times \frac{5}{19}$ or $\frac{12}{20} \times \frac{3}{19}$ or $\frac{5}{20} \times \frac{12}{19}$ or $\frac{5}{20} \times \frac{3}{19}$ or $\frac{3}{20} \times \frac{12}{19}$ or $\frac{3}{20} \times \frac{5}{15}$ <br> M1 for $\frac{12}{20} \times \frac{5}{19}+\frac{12}{20} \times \frac{3}{19}+\frac{5}{20} \times \frac{12}{19}+\frac{5}{20} \times \frac{3}{19}+\frac{3}{20} \times \frac{12}{19}+\frac{3}{20} \times \frac{5}{19}$ <br> A1 for $\frac{222}{380}$ oe or $0.58(421 \ldots)$ <br> OR <br> B1 for $\frac{8}{19}$ or $\frac{15}{19}$ or $\frac{17}{19}$ <br> M1 for $\frac{12}{20} \times \frac{8}{19}$ or $\frac{5}{20} \times \frac{15}{19}$ or $\frac{3}{20} \times \frac{17}{19}$ <br> M1 for $\frac{12}{20} \times \frac{8}{19}+\frac{5}{20} \times \frac{15}{19}+\frac{3}{20} \times \frac{17}{19}$ <br> A1 for $\frac{222}{380}$ oe or $0.58(421 \ldots$ ) <br> OR <br> (continued overleaf...) |




