1MA0_2F					
Question		Working	Answer	Mark	Notes
1	(a)		4216	1	B1 cao
	(b)		eight thousand	1	B1 for eight thousand or 8000
	(c)		3570	1	B1 cao
2	(i) (ii)		Cuboid Pyramid	2	B1 for cuboid or (rectangular) prism B1 for pyramid, rectangular base pyramid, square base pyramid
3	(a)		24	1	B1 cao
	(b)		10	1	B1 cao
	(c)		$\begin{gathered} 2 \text { circles } \\ 31 / 2 \text { circles } \end{gathered}$	2	B1 for 2 circles in Thursday B1 for $31 / 2$ circles oe in Friday
4		$\begin{aligned} & 10 \div 0.79=12.65 \ldots \\ & 12 \times 79=948 \\ & 1000-948 \end{aligned}$	52p	3	M1 for $1000 \div 79$ or $10 \div 0.79(=12.65 \ldots)$ or 12×79 or 12×0.79 A1 for 9.48 or 948 A1 for 52 p or $£ 0.52$ or $£ 0.52$ p (SC if M0 then B2 for $0.52,0.52$ p or 52 as answer) (SC if M0 then B 1 for 12 as answer)
5	(a)		90	1	B1 cao
	(b)		correct angle marked	1	B 1 for O in an obtuse angle
	(c)		2 perpendicular lines marked	1	B1 for two perpendicular lines marked

1MA0_2F					
Question		Working	Answer	Mark	Notes
6			3 c	1	B1 3c oe
	(b)		$6 e f$	1	B16ef oe
	(c)		$7 p+5 t$	2	B2 for $7 p+5 t$ (B1 for either $7 p$ or $5 t$)
7	(a)		2 lines of symmetry drawn	2	B2 for fully correct answer accept freehand lines (B1 for a correct line of symmetry drawn - ignore extra lines)
	(b)		6	1	B1 6, six
8	(a)		24	1	B1 cao
	(b)		22	1	B1 for 22
9	(a)		Kanon	1	B1 cao
	(b)		Office, Quikprint	1	B1 cao
	(c)		Smart	1	B1 cao
10	(i)	$360-140-60=160$	160 and reason	2	B1 for 160
	(ii)				C 1 (indep) for Angles at a point add up to $360^{(0)}$ or angles in a full turn add up to $360^{(0)}$

1MA0_2F					
Question		Working	Answer	Mark	Notes
11	(a)		1030	1	B1 1030 or 2230 or half past ten or 10.30 etc
	(b)		1610	1	B1 1610 Accept 16:10 and 16.10
	(c)		650 am	2	M1 for attempt to add 10 mins and 15 mins and 1 hour ($=1 \mathrm{hr} 25 \mathrm{~min}$) A1 for 650 or 650 am oe
					OR M1 for attempt to subtract 10 mins and 15 mins and 1 hour from 815 A1 for 650 or 650 am oe
12	(a)		4.8	1	B1 for answer in range 4.6-5
	(b)		37.5	2	M1 for a valid method eg reading from graph for 6 km then $\times 10$
					A1 for answer in range $35-40$
					OR
					M1 for use of conversion factor $60 \times 5 / 8$ oe A1 for answer in range $35-40$

1MA0_2F					
Question		Working	Answer	Mark	Notes
13	(a)		4	1	B1 cao
	(b)	$34 \div 10$	3.4	2	M1 for attempt to sum all values and divide by 10 or $34 \div 10$ A1 $3.4,3 \frac{4}{10}, 3 \frac{2}{5}$
	(c)		5	2	M1 for 6-1 or $1-6$, or -5 A1 cao
14		$3.5 \times 12-5$	37	2	M1 for $3.5 \times 12-5$ or 42-5 A1 cao
	(b)	$3.5 \times-9--6$	-25.5	2	M1 for $3.5 \times-9--6$ or $3.5 \times-9+6$ or sight of -31.5 A1 for -25.5 or $-\frac{51}{2}$ or $-25 \frac{1}{2}$

1MA0_2F					
Question		Working	Answer	Mark	Notes
15	(a)			1	B1 for correct pattern
	(b)		31	2	M1 for correct diagram of pattern number 10 with or without shading A1 cao OR M1 for any 4 consecutive terms in the sequence 4,7 , 10, A1 cao OR M1 for use of $3 n+1$ with $n=10$ A1 cao
	(c)		No with appropriate reason	2	M1 for attempt to divide 45 by 3 A1 for 'No' and comment that this is the number needed for pattern number 15 OR M1 for starts at 4 and builds up correctly to 46 or 55 A1 for 'No' and comments that 55 are needed for pattern 18 or 46 are needed for pattern 15 oe OR M1 for use of $3 n+1$ with $n=18$ A 1 for ' No ' and comments that 55 are needed for pattern 18 oe OR M1 for $3 n+1=46$ A1 for 'No' and comments 46 are needed for pattern 15 oe

1MA0_2F					
Question		Working	Answer	Mark	Notes
16			eg. 10, 12, 5, 2	3	M1 for at least 2 factors of 60 clearly identified M1 for $20<$ sum of ' 4 distinct natural numbers' <35 A1 cao
17	(a) (b)	$\begin{aligned} & 84 \div 7(=12) \\ & 120 \div 12 \end{aligned}$	10 Don't know + reason	2	M1 for $84 \div 7(=12)$ or $7 \div 84(=0.083$.. $)$ A1 cao B1 'Don't know' or 'No' with reason eg. Need to know how many medals Russian Federation won or pie chart shows proportion not number of medals won
18	(i) (ii) (iii)		$\begin{gathered} \frac{7}{18} \\ \frac{12}{18} \\ 0 \end{gathered}$	3	B1 for $\frac{7}{18}$ oe B1 for $\frac{12}{18}$ or $\frac{2}{3}$ oe B1 for 0 or $\frac{0}{18}$ or zero oe
19	(a) (b) (c)		$\begin{gathered} 19 \\ 8 \\ 2 \frac{1}{4} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao B1 cao M1 for $4 m=15-6$ or clear attempt to subtract 6 from both sides of the equation A1 for $2 \frac{1}{4}$ or 2.25 or $\frac{9}{4}$

Question	Working	Answer	Mark	Notes
				OR M1 for $\frac{42}{100}+\frac{2}{5}\left(=\frac{82}{100}\right)$ or $\left(=\frac{41}{50}\right)$ M1 for $\frac{41}{50} \times 250$ M1 for 250-'205' A1 cao OR M1 for $\frac{2}{5} \times 100$ or $\frac{2}{5}=\frac{2 \times 20}{5 \times 20}$ or 2×20 M1 for ' $(42+' 40)^{\prime} / 100 \times 250$ M1 for 250-205' A1 cao

1M	$0 _2 \mathrm{~F}$				
Question		Working	Answer	Mark	Notes
23			Farm shop	4	M1 for $12.5 \div 2.5$ (=5)
					M1 for ' 5 ' $\times 1.83$ or ' 5 ' $\times 183$
					A1 for (£)9.15 or 915(p)
					C 1 for decision ft working shown dep on at least M1
					OR
					M1 for $12.5 \div 2.5(=5)$
					M1 for $9 \div 5$ or $900 \div$ ' 5 '
					A1 for (£)1.8(0) or 180(p)
					C 1 for decision ft working shown dep on at least M1
					OR
					M1 for $9 \div 12.5(=0.72)$ or $1.83 \div 2.5(=0.732)$
					M1 for $9 \div 12.5(=0.72)$ and $1.83 \div 2.5(=0.732)$
					A1 for 72(p) and 73.(2)(p) or (£)0.72 and (£)0.73(2)
					C 1 for decision ft working shown dep on at least M1
					OR
					M1 for $12.5 \div 9(=1.388 \ldots$.. oe
					M1 for $2.5 \div 1.83$ ($=1.366$.) oe
					A1 for $1.38 \ldots$ and $1.36 \ldots$ truncated or rounded to at
					C 1 for decision ft working shown dep on at least M1

| 1MA0_2F | | | | |
| :---: | :---: | :---: | :---: | :---: | :--- |
| Question | Working | Answer | Mark | Notes |

1MA0_2F					
Question		Working	Answer	Mark	Notes
26	(a)		negative	1	B1 for negative
	(b)		10.3-11.7	2	M1 for a single straight line segment with negative gradient that could be used as a line of best fit or an indication on the diagram from 2.5 on the x axis A1 for an answer in the range $10.3-11.7$ inclusive
*27		$\begin{aligned} & (17-2.8) \times 9.5=134.9 \\ & \pi \times(3.8 \div 2)^{2}=11.34 . . \\ & 134.9-2 \times 11.34=112.21 \\ & 112.21 \div 25=4.488 \end{aligned}$	5	5	M1 for $(17-2.8) \times 9.5(=134.9)$ or $17 \times 9.5-2.8 \times 9.5$ ($=161.5-26.6=134.9$) M1 for $\pi \times(3.8 \div 2)^{2}(=11.33-11.35)$ M1 (dep on M1) for ' $134.9^{\prime}-2 \times$ ' 11.34 ' A1 for 112-113 C1 (dep on at least M1) for 'He needs 5 boxes' ft from candidate's calculation rounded up to the next integer.

