June 2012

1MA	0_1H				
Qu	lestion	Working	Answer	Mark	Notes
1	(a)		Type of film Tally Frequency	2	B2 for a table with all 3 aspects: Column/row heading 'type of film' or list of at least 3 film types Column/row heading 'tally' or tally marks (or key) Column/row heading 'frequency' or totals oe (B1 for a table with 2 of the 3 aspects)
	(b)			1	B1 for acceptable reason eg. all same age, sample too small, biased, same school

1MA	0_1H				
Qu	estion	Working	Answer	Mark	Notes
2	(a)	$360 \div 60 = 6$ $300 \div 60 = 5$ $6 \times 5 =$	Yes and 30	3	M1 for dividing side of patio by side of paving slab eg. $360 \div 60$ or $300 \div 60$ or $3.6 \div 0.6$ or $3 \div 0.6$ or 6 and 5 seen (may be on a diagram) or 6 divisions seen on length of diagram or 5 divisions seen on width of diagram M1 for correct method to find number of paving slabs eg. $(360 \div 60) \times (300 \div 60)$ oe or 6×5 or 30 squares seen on diagram (units may not be consistent) A1 for Yes and 30 (or 2 extra) with correct calculations OR M1 for correct method to find area of patio or paving slab eg 360×300 or 108000 seen or 60×60 or 3600 seen or 3.6×3 or 10.8 seen or 0.6×0.6 or 0.36 seen M1 for dividing area of patio by area of a paving slab eg. $(3.6 \times 3) \div (0.6 \times 0.6)$ oe (units may not be consistent) A1 for Yes and 30 (or 2 extra) with correct calculations OR M1 for dividing area of patio by area of a paving slab eg. $(3.6 \times 3) \div (0.6 \times 0.6)$ oe (units may not be consistent) A1 for Yes and 30 (or 2 extra) with correct calculations OR M1 for method to find area of patio or area of 32 slabs eg. $60 \times 60 \times 32$ or 360×300 M1 for method to find both area of patio and area of 32 slabs eg. $60 \times 60 \times 32$ and 360×300 (units may not be consistent) A1 for Yes and 115200 and 108000 OR Yes and 11.52 and 10.8 NB : Throughout the question, candidates could be working in metres or centimetres

1MA0_1H	1MA0_1H								
Question	Working	Answer	Mark	Notes					
(b)	$ \begin{array}{c} 1726\\ \underline{25890}\\ 27616\\\\ 2\\ 7\\ \hline 2 \\ 4\\ \hline 2 \\ 4\\ \hline 2 \\ 4\\ \hline 2 \\ 4\\ \hline 2 \\ 7\\ \hline 2 \\ \hline 2 \\ \hline 4 \\ \hline 8 \\ 0 \\ 6 \\ \hline 1 \\ 6 \\ \hline 2 \\ \hline 3 \\ 2 \\ \hline 6 \\ \hline 2 \\ \hline 8 \\ 0 \\ 6 \\ \hline 3 \\ 2 \\ \hline 6 \\ \hline 8 \\ 0 \\ 6 \\ \hline 3 \\ 2 \\ \hline 6 \\ \hline 8 \\ 0 \\ 120 \\ 6 \\ \hline 8 \\ \hline 8 \\ 0 \\ 120 \\ 6 \\ \hline 8 \\ \hline 8 \\ 120 \\ 6 \\ \hline 8 \\ 120 \\ 120 \\ 6 \\ \hline 8 \\ 120 \\ 120 \\ 6 \\ \hline 8 \\ 120$	276.16	3	 M1 for complete correct method with relative place value correct. Condone 1 multiplication error, addition not necessary. OR M1 for a complete grid. Condone 1 multiplication error, addition not necessary. OR M1 for sight of a complete partitioning method, condone 1 multiplication error. Final addition not necessary. A1 for digits 27616 A1 ft (dep on M1) for correct placement of decimal point after addition (of appropriate values) (SC: B1 for attempting to add 32 lots of 8.63) 					

1MA	1MA0_1H							
Qu	estion	Working	Answer	Mark	Notes			
		Working	Answer10Ed is cheaper up to 20 miles, Bill is cheaper for more than 20 milesx	Mark 1 3	NotesB1 caoM1 for correct line for Ed intersecting at $(20,30) \pm 1$ sq tolerance or $10 + x = 1.5x$ oeC2 (dep on M1) for a correct full statement ft from grapheg. Ed cheaper up to 20 miles and Bill cheaper for more than 20 miles(C1 (dep on M1) for a correct conclusion ft from grapheg. cheaper at 10 miles with Ed ; eg. cheaper at 50 miles with Billeg. same cost at 20 miles; eg for £5 go further with Bill ORA general statement covering short and long distances eg. Ed ischeaper for shorter distances and Bill is cheaper for long distances)ORM1 for correct method to work out Ed's delivery cost for at least 2values of n miles where $0 < n \le 50$ ORfor correct method to work out Ed and Bill's delivery cost for n mileswhere $0 < n \le 50$ C2 (dep on M1) for 20 miles linked with £30 for Ed and Bill with correct full statementeg. Ed cheaper up to 20 miles and Bill cheaper for more than 20 miles(C1 (dep on M1) for a correct conclusioneg. cheaper at 10 miles with Ed; eg. cheaper at 50 miles with Billeg. same cost at 20 miles; eg for £5 go further with Bill ORA general statement covering short and long distances eg. Ed is(C1 (dep on M1) for a correct conclusioneg. cheaper at 10 miles with Ed; eg. cheaper at 50 miles with Billeg. same cost at 20 miles; eg for £5 go further with Bill ORA general statement covering short and long distances eg. Ed is(C1 (dep on M1) for a correct short and long distances eg. Ed is(C1 (dep on M1) for a correct full statement seen with no workingeg. Ed cheaper up to 20 miles			
					QWC: Decision and justification should be clear with working clearly presented and attributable			

1MA	.0_1H				
Qu	estion	Working	Answer	Mark	Notes
4		2 9 3 1 3 5 6 9 4 2 3 3 4 6 8 9 5 2 4 5 OR 20 9 30 1 3 5 6 9 40 2 3 3 4 6 8 9 50 2 4 5	2 9 3 1 3 5 6 9 4 2 3 3 4 6 8 9 5 2 4 5 Key: 2 9 = 29	3	 B3 for fully correct diagram with appropriate key (B2 for ordered leaves, with at most two errors or omissions and a key OR correct unordered leaves and a key OR correct ordered leaves) (B1 for unordered or ordered leaves, with at most two errors or omissions OR key) NB : Order of stem may be reversed; condone commas between leaves
5		$c = \frac{30 \times 40}{150}$	8	2	M1 for $\frac{30 \times 40}{150}$ or 1200 seen A1 cao
6	(a)		30	2	M1 for $25 \div 10$ or 2.5 seen or $10 \div 25$ or 0.4 seen or 12 + 12 + 6 oe or a complete method eg. $25 \times 12 \div 10$ oe A1 cao
	(b)	1000 ÷ 200 × 12	60	2	M1 for 500÷50 or 1000÷200 or 500÷10 OR correct scale factor clearly linked with one ingredient eg. 10 with sugar or 5 with butter or flour or 50 with milk OR answer of 120 or 600 A1 cao

Working	Answer	Mark	Notes
arton after 20, 40, 60, 80, 100, 0 CM of 20 and 24 is 120 00 am + 120 minutes R eton after 24, 48, 1h 12 m, 36m, 2h arton after 20, 40, 1 h, 1h 20m, 40m, 2h CM is 2 hours 00 am + 2 hours R mes from 9:00 am when each s leaves the bus station eton at 9:24, 9:48, 10:12, :36, 11:00 arton at 9:20, 9:40, 10:00, :20, 10:40, 11:00 R $= 2 \times 2 \times 5$	11:00 am	3	M1 for listing multiples of 20 and 24 with at least 3 numbers in each list ; multiples could be given in minutes or in hours and minutes (condone one addition error in total in first 3 numbers in lists) A1 identify 120 (mins) or 2 (hours) as LCM A1 for 11:00 (am) or 11(am) or 11 o'clock OR M1 for listing times after 9am when each bus leaves the bus station, with at least 3 times in each list (condone one addition error in total in first 3 times after 9am in lists) A1 for correct times in each list up to and including 11:00 A1 for 11:00 (am) or 11(am) or 11 o'clock OR M1 for correct method to write 20 and 24 in terms of their prime factors 2, 2, 5 and 2, 2, 2, 3 (condone one error) A1 identify 120 as LCM A1 for 11:00 (am) or 11(am) or 11 o'clock
	Working eton after 24, 48, 72, 96, 120 arton after 20, 40, 60, 80, 100, 0 CM of 20 and 24 is 120 00 am + 120 minutes R eton after 24, 48, 1h 12 m, 36m, 2h arton after 20, 40, 1 h, 1h 20m, 40m, 2h CM is 2 hours 00 am + 2 hours R mes from 9:00 am when each s leaves the bus station eton at 9:24, 9:48, 10:12, :36, 11:00 arton at 9:20, 9:40, 10:00, :20, 10:40, 11:00 R = $2 \times 2 \times 5$ = $2 \times 2 \times 5$ = $2 \times 2 \times 5$	$11:00 \text{ am}$ $11:00 \text{ am} + 120 \text{ minutes}$ \mathbf{R} $11:00 \text{ am}$	3 3 $11:00 am$ 3 3 3 3 3 3 $11:00 am$ 3 3 3 3 3 3 3 0 $20 and 24 is 120$ $00 am + 120 minutes$ R 3

1MA	1MA0_1H						
Que	estion	Working	Answer	Mark	Notes		
8	(a)		6 <i>y</i> – 15	1	B1 cao		
	(b)		4x(2x+y)	2	B2 cao (B1 for $x(8x + 4y)$ or $2x(4x + 2y)$ or $4(2x^2 + xy)$ or 4x(ax + by) where <i>a</i> , <i>b</i> are positive integers or ax(2x + y) where <i>a</i> is a positive integer or 4x(2x - y))		
	(c)	$10t = gh$ $h = \frac{10t}{g}$	$\frac{10t}{g}$	2	M1 for clear intention to multiply both sides of the equation by 10 (eg. ×10 seen on both sides of equation) or clear intention to divide both sides of the equation by g (eg. $\div g$ seen on both sides of equation) or $10t = gh$ or $\frac{t}{g} = \frac{h}{10}$ or fully correct reverse flow diagram eg. $\leftarrow \times 10 \leftarrow \div g \leftarrow$ A1 for $\frac{10t}{g}$ oe		

1MA0_1H	1MA0_1H							
Question	Working	Answer	Mark	Notes				
9		Rotation	3	B1 for rotation				
		180°		B1 for 180°				
		Centre (3, 3)		B1 for (3, 3)				
		or		OR				
				B1 for enlargement				
		Enlargement		B1 for scale factor -1				
		Scale factor -1		B1 for (3, 3)				
		Centre (3, 3)						
				B0 for a combination of transformations				

1MA	1MA0_1H							
Qu	estion	Working	Answer	Mark	Notes			
10		$2.25 \times 60 \div 100 = 1.35$ 1.35 + 0.80 = 2.15 $1.5 \times 60 \div 100 = 0.90$ 0.90 + 1.90 = 2.80	Railtickets with correct calculations	4	NB. All work may be done in pence throughout M1 for correct method to find credit card charge for one company eg. $0.0225 \times 60(=1.35)$ oe or $0.015 \times 60 (=0.9)$ oe M1 (dep) for correct method to find total additional charge or total price for one company eg. $0.0225 \times 60 + 0.80$ or $0.015 \times 60 + 1.90$ or 2.15 or $2.8(0)$ or 62.15 or $62.8(0)A1 for 2.15 and 2.8(0) or 62.15 and 62.8(0)C1 (dep on M1) for a statement deducing the cheapestcompany, but figures used for the comparison must also bestated somewhere, and a clear association with the name ofeach companyORM1 for correct method to find percentage of (60+booking fee)eg. 0.0225 \times 60.8(=1.368) oe or 0.015 \times 61.9(=0.9285)M1 (dep) for correct method to find total cost or totaladditional costeg. '1.368' + 60.8(=62.168) or '1.368' + 0.8 (=2.168) or'0.9285' + 61.9 (=62.8285) or '0.9285' + 1.9 (=2.8285)A1 for 62.168 or 62.17 AND 62.8285 or 62.83 OR2.168 or 2.17 AND 2.8285 or 2.83C1 (dep on M1) for a statement deducing the cheapestcompany, but figures used for the comparison must also bestated somewhere, and a clear association with the name ofeach company$			
		OR			OR			

1MA0_1H	1MA0_1H							
Question	Working	Answer	Mark	Notes				
	2.25 - 1.5 = 0.75 $0.075 \times 60 \div 100 = 0.45$ 0.80 + 0.45 = 1.25 1.25 < 1.90			M1 for correct method to find difference in cost of credit card charge eg. $(2.25 - 1.5) \times 60 \div 100$ oe or 0.45 seen M1 (dep) for using difference with booking fee or finding difference between booking fees eg. $0.80 + "0.45"(=1.25)$ or 1.90 - "0.45" (=1.45) or $1.90 - 0.8 (=1.1(0))A1 1.25 and 1.9(0) or 0.45 and 1.1(0)C1 (dep on M1) for a statement deducing the cheapestcompany, but figures used for the comparison must also bestated somewhere, and a clear association with the name ofeach companyQWC: Decision and justification should be clear with workingclearly presented and attributable$				

1MA0_1H				
Question	Working	Answer	Mark	Notes
11	3x-15 = 2x+24 $x = 39$	39	3	M1 for forming an appropriate equation eg. 3x - 15 = 2x + 24
	OR 2x+3x-15+2x+2x+24 = 360 9x+9 = 360 0x = 251			OR 2x + 3x - 15 + 2x + 24 = 360
	9x = 351 $x = 39$			$OR \\ 2x + 2x + 24 = 180$
	OR 2x + 2x + 24 = 180 4x + 24 = 180 4x = 156			OR 2x + 3x - 15 = 180 OR
	x = 39			2x + 3x - 15 = 2x + 2x + 24
	OR 2x + 3x - 15 = 180 5x - 15 = 180 5x = 195			M1 (dep) for correct operation(s) to isolate x and non-x terms in an equation to get to $ax = b$ A1 cao
	<i>x</i> = 39			OR M2 for $\frac{351}{9}$ oe or $\frac{195}{5}$ oe or $\frac{156}{4}$ oe A1 cao

1MA	1MA0_1H							
Qu	lestion	Working	Answer	Mark	Notes			
12		$6 \times 10 \times 8 = 480$ $480 \div (6 \times 20) =$	4	3	M1 for $6 \times 10 \times 8$ or 480 seen M1 (dep) for '480' \div (6 × 20) oe A1 cao OR M1 for $20 \div 10$ (=2) or $10 \div 20$ (= $\frac{1}{2}$) or $\frac{8}{20}$ oe or $\frac{20}{8}$ oe M1 (dep) for $8 \div '2'$ or $8 \times \frac{1}{2}$ or $\frac{8}{20} \times 10$ oe or $10 \div \frac{20}{8}$ A1 cao SC : B2 for answer of 16 coming from $\frac{20 \times 8 \times 6}{10 \times 6}$ oe			

1MA0_1H				
Question	Working	Answer	Mark	Notes
13	$180 - (360 \div 6) = 120$ $180 - (360 \div 8) = 135$ $360 - 120 - 135 =$ OR $360 \div 6 = 60$ $360 \div 8 = 45$ $60 + 45 =$	105	4	NB. Do remember to look at the diagram when marking this question. Looking at the complete method should confirm if interior or exterior angles are being calculated M1 for a correct method to work out the interior angle of a regular hexagon eg. $180 - (360 \div 6)$ oe or $(6 - 2) \times 180 \div 6$ oe or 120 as interior angle of the hexagon M1 for a correct method to work out the interior angle of a regular octagon $180 - (360 \div 8)$ oe or $(8 - 2) \times 180 \div 8$ oe or 135 as interior angle of the octagon M1 (dep on at least M1) for a complete method eg. $360 - (120)^{\circ} - (135)^{\circ}$ A1 cao OR M1 for a correct method to work out an exterior angle of a regular hexagon eg. $360 \div 6$ or 60 as exterior angle of the hexagon
				M1 for a correct method to work out an exterior angle of a regular hexagon 360 ÷ 8 or 45 as exterior angle of the octagon M1 (dep on at least M1) for a complete method eg. "60" + "45" A1 cao SC : B1 for answer of 255

1MA	0_1H				
Qu	estion	Working	Answer	Mark	Notes
14	(a)		35	1	B1 for 34 – 36
	(b)		110	1 B1 for 108 – 112	
	(c)		Position of <i>B</i> marked	B 2 B1 for a point marked on a bearing of $40^{\circ} (\pm 2^{\circ})$ from <i>H</i> or for a line on a bearing of $40^{\circ} (\pm 2^{\circ})$ (use straight line guidelines on overlay)	
					B1 for a point 4 cm (\pm 0.2cm) from <i>H</i> or for a line of length 4 cm (\pm 0.2cm) from <i>H</i>
					(use circular guidelines on overlay)
					NB. No label needed for point
15	(a)		170	1	B1 accept answers in range 170 - 170.5 inclusive
	(b)			3	B3 for box plot with all 3 aspects correct (overlay) aspect 1 : ends of whiskers at 153 and 186 aspect 2 : ends of box at 165 and 175 aspect 3 : median marked at 170 or ft (a) provided 165<(<i>a</i>)<175 (B2 for box plot with two aspects correct) (B1 for one aspect or correct quartiles and median identified)
					SC : B2 for all 5 values (153, 165, '170', 175, 186) plotted
	(c)		Two correct comparisons	2	B1 ft from (b) for a correct comparison of range or inter-quartile range eg. the range / iqr is smaller for group B than group A
					B1 ft from (b) for a correct comparison of median or upper quartile or lower quartile or minimum or maximum eg. the median in group A is greater than the median in group B

1MA	1MA0_1H							
Qu	estion	Working	Answer	Mark	Notes			
16	(a)		<i>m</i> ⁻¹⁰	1	B1 for m^{-10} or $\frac{1}{m^{10}}$			
	(b)		(x+5)(x-2)	2	M1 for $(x \pm 5)(x \pm 2)$ or x(x-2) + 5(x-2) or $x(x + 5) - 2(x + 5)A1$			
17	(a)		1	1	B1 cao			
	(b)		0.000067	1	B1 cao			
	(c)		$2.7 imes 10^{14}$	2	M1 for $27 \times 10^{7+6}$ or 27×10^{13} oe or an answer of 2.7×10^n where <i>n</i> is an integer or an answer of $a \times 10^{14}$ where $1 \le a < 10$ A1 cao			

1MA	.0_1H				
Qu	estion	Working	Answer	Mark	Notes
18	estion	$\frac{1}{2} \times 4 \times 3 = 6$ $\left(\frac{1}{2}\right)^2 \times 6 =$	1.5	3	M1 for $\frac{1}{2} \times 4 \times 3$ oe M1 for $\left(\frac{1}{2}\right)^2 \times 6^{\circ}$ A1 cao OR M2 for $\frac{1}{2} \times 2 \times 1.5$ oe (M1 for triangle with all lengths $\frac{1}{2}$ corresponding lengths of triangle <i>ABC</i> seen in any position or
					vertices seen at $(1, 1)$ $(3,1)$ and $(2.5, 2.5)$ or stated) A1 cao
19	(a)		0.6 0.7, 0.3, 0.7	2	B1 for 0.6 in correct position on tree diagram B1 for 0.7, 0.3, 0.7 in correct positions on tree diagram
	(b)	0.4 × 0.3 =	0.12	2	M1 for 0.4×0.3 oe or a complete alternative method ft from tree diagram A1 for 0.12 oe

1MA	1MA0_1H						
Qu	estion	Working	Answer	Mark	Notes		
20		15x + 6y = 33 8x - 6y = 36 23x = 69 $5 \times 3 + 2y = 11$ OR $x = \frac{11 - 2y}{5}$ $4 \times \left(\frac{11 - 2y}{5}\right) - 3y = 18$ 44 - 8y - 15y = 90 -46 = 23y y = -2	x = 3 $y = -2$	4	M1 for coefficients of x or y the same followed by correct operation (condone one arithmetic error) A1 cao for first solution M1 (dep on M1) for correct substitution of found value into one of the equations or appropriate method after starting again (condone one arithmetic error) A1 cao for second solution OR M1 for full method to rearrange and substitute to eliminate x or y, (condone one arithmetical error) A1 cao for first solution M1 (dep on M1) for correct substitution of found value into one of the equations or appropriate method after starting again (condone one arithmetic error) A1 cao for second solution Trial and improvement 0 marks unless both x and y correct values found		
					tound		

1MA0 1H				
Question	Working	Answer	Mark	Notes
21*	$ABO = ADO = 90^{\circ}$ (Angle between tangent and radius is 90°) DOB = 360 - 90 - 90 - 50 (Angles in a quadrilateral add up to 360°) $BCD = 130 \div 2$ (Angle at centre is twice angle at circumference) OR $ABD = (180 - 50) \div 2$ (Base angles of an isosceles triangle) BCD = 65 (Alternate segment theorem)	65°	4	B1 for $ABO = 90$ or $ADO = 90$ (may be on diagram) B1 for $BCD = 65$ (may be on diagram) C2 for $BCD = 65^{\circ}$ stated or $DCB = 65^{\circ}$ stated or angle $C = 65^{\circ}$ stated with all reasons: angle between tangent and radius is 90°; angles in a quadrilateral sum to 360°; angle at centre is twice angle at circumference (accept angle at circumference is half (or $\frac{1}{2}$) the angle at the centre) (C1 for one correct and appropriate circle theorem reason) QWC: Working clearly laid out and reasons given using correct language OR B1 for $ABD = 65$ or $ADB = 65$ (may be on diagram) B1 for $BCD = 65$ (may be on diagram) C2 for $BCD = 65^{\circ}$ stated or $DCB = 65^{\circ}$ stated or angle $C = 65^{\circ}$ stated with all reasons: base angles of an isosceles triangle are equal; angles in a triangle sum to 180° ; tangents from an external point are equal; alternate segment theorem (C1 for one correct and appropriate circle theorem reason) QWC: Working clearly laid out and reasons given using correct language

1MA	.0_1H				
Qu	estion	Working	Answer	Mark	Notes
22	(a)	F 15 25 36 24 Fd 3 5 3.6 1.2	Correct histogram	3	 B3 for fully correct histogram (overlay) (B2 for 3 correct blocks) (B1 for 2 correct blocks of different widths) SC : B1 for correct key, eg. 1 cm² = 5 (cars) or correct values for (freq ÷ class interval) for at least 3 frequencies (3, 5, 3.6, 1.2) NB: The overlay shows one possible histogram, there are other correct solutions.
	(b)	$\frac{3}{4} \times 24$	18	2	M1 for $\frac{3}{4} \times 24$ (=18) oe or $\frac{1}{4} \times 24$ (=6) oe A1 cao OR M1 ft histogram for 15 × "1.2" or 5 × "1.2" A1 ft

1MA	.0_1H				
Qu	estion	Working	Answer	Mark	Notes
23	(a)	$\frac{(x+4)(x-1)}{(2x-3)(x-1)}$	$\frac{x+4}{2x-3}$	3	M1 for $(x + 4)(x - 1)$ M1 for $(2x - 3)(x - 1)$ A1 cao
	(b)	$\frac{4(x-2)}{(x+2)(x-2)} + \frac{3(x+2)}{(x+2)(x-2)}$	$\frac{7x-2}{(x+2)(x-2)}$	3	M1 for denominator $(x + 2)(x - 2)$ oe or $x^2 - 4$ M1 for $\frac{4(x-2)}{(x+2)(x-2)}$ oe or $\frac{3(x+2)}{(x+2)(x-2)}$ oe (NB. The denominator must be $(x + 2)(x - 2)$ or $x^2 - 4$ or another suitable common denominator) A1 for $\frac{7x-2}{(x+2)(x-2)}$ or $\frac{7x-2}{x^2-4}$ SC: If no marks awarded then award B1 for $\frac{4(x-2)}{x^2-2} + \frac{3(x+2)}{x^2-2}$ oe

1MA	0_1H				
Que	estion	Working	Answer	Mark	Notes
24		eg. x = 0.28181 100x = 28.181 99x = 27.9	$\frac{31}{110}$	3	M1 for 0.28181() or $0.2 + 0.08181()$ or evidence of correct recurring decimal eg. 281.81() M1 for two correct recurring decimals that, when subtracted, would result in a terminating decimal, and attempting the subtraction eg. $100x = 28.1818, x = 0.28181$ and subtracting eg. $1000x = 281.8181, 10x = 2.8181$ and subtracting OR $\frac{27.9}{99}$ or $\frac{279}{990}$ oe A1 cao
25		Vol cylinder = $\pi \times (2x)^2 \times 9x$ = $36\pi x^3$ $36\pi x^3 = \frac{4}{3}\pi r^3$ $r^3 = 27x^3$	3 <i>x</i>	3	M1 for sub. into πr^2 h eg. $\pi \times (2x)^2 \times 9x$ oe M1 for $\pi \times (2x)^2 \times 9x = \frac{4}{3}\pi r^3$ oe A1 oe eg. $\sqrt[3]{\frac{36x^3}{\frac{4}{3}}}$ NB : For both method marks condone missing brackets around the $2x$

1MA0_1H	1MA0_1H							
Question	Working	Answer	Mark	Notes				
26 (a)		Parabola through (4, -1), (2, 3), (6, 3) (3, 0) (5, 0)	2	B2 for a parabola with min $(4, -1)$, through $(2, 3)$, (6, 3),(3, 0), (5, 0) (B1 for a parabola with min $(4, -1)$ or a parabola through $(2, 3)$ and $(6, 3)$ or a parabola through $(3, 0)$ and $(5, 0)$ or a translation of the given parabola along the <i>x</i> -axis by any value other than +3 with the points $(-1, 3)$ $(0, 0)$ (1, -1) $(2, 0)$ $(3, 3)$ all translated by the same amount)				
(b)		Parabola through (1, -2), (0, 0), (2, 0)	2	B2 parabola with min $(1, -2)$, through $(0, 0)$ and $(2, 0)$ (B1 parabola with min $(1, -2)$ or parabola through $(0, 0)$, $(2, 0)$ $(-1, 6)$ and $(3, 6)$)				