1MA0_1F					
Question		Working	Answer	Mark	Notes
1	(a)		380	1	B1 cao
	(b)		6.2	1	B1 cao
	(c)		Arrow at 34	1	B1 cao
2	(a)		8	1	B1 for 8 ± 0.2
	(b)		35	1	B1 for $35 \pm 2^{\circ}$
	(c)		Circle drawn	1	B1 for all parts within $\pm 2 \mathrm{~mm}$, (use overlay)
3	(a)		4, 7, 4, 3, 2	2	M1 for at least 3 correct tallies or at least 3 correct frequencies A1 for all frequencies correct
	(b)		7	1	B1 for 7 or ft from frequencies in (a) or tallies if no frequencies
	(c)		Diagram drawn	3	M1 for bar chart or other suitable chart with at least 3 correct heights for their scale (can f.t.) A1 for all 5 bars correctly labelled and vertical axis correctly scaled A1 for fully correct or ft frequencies in (a) OR M1 for pictogram with at least 3 correct rows (can f.t.) A1 for correct labels on all 5 rows and correctly key A1 for fully correct or ft frequencies in (a) OR M1 for pie chart with at least 3 correct sectors $\pm 2^{\circ}$ (can f.t.) A1 for all 5 sectors correctly labelled A1 for fully correct or ft frequencies in (a)

1MA0_1F					
Question		Working	Answer	Mark	Notes
4		$\begin{aligned} & £ 1.18+94 \mathrm{p}=£ 2.12 \\ & £ 5-£ 2.12-30 \mathrm{p} \\ & =£ 2.58 \\ & £ 2.58 \div 2= \end{aligned}$	1.29	3	M2 for $(5-1.18-0.94-0.30) \div 2$ oe or digits 129 (M1 for $1.18+0.94$ or 2.12 seen or $1.18+0.94+0.30$ oe or 2.42 seen or $5-1.18-0.94$ oe or 2.88 seen or $(5-1.18-0.94) \div 2$ or 1.44 seen or $5-1.18-0.94-0.30$ oe or 2.58 seen $)$ A1 cao NOTE: Accept working in $£$ or pence
5	(a)(i) (ii) (b)		$\begin{aligned} & (2,3) \\ & (-3,1) \end{aligned}$ Point plotted at $(3,-4)$	2	B1 cao B1 cao B1 cao
6	(a) (b) (c)		$\begin{gathered} -5 \\ 6 \\ 3 \end{gathered}$	1 1 1	B1 cao B1 for 6 or -6 B1 cao
7			(P, B), (P, S), (P, L) $(\mathrm{M}, \mathrm{B}),(\mathrm{M}, \mathrm{S}),(\mathrm{M}, \mathrm{L})$ $(\mathrm{H}, \mathrm{B}),(\mathrm{H}, \mathrm{S}),(\mathrm{H}, \mathrm{L})$	2	M1 for any 3 combinations with no incorrect combinations A1 for all 9 combinations with no duplicates or extras
8	(a) (b)	$24 \div 4=$	Walk 6	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao M1 for $24 \div 4$ oe or $1 / 4$ oe seen A1 cao

1MA0_1F					
Question		Working	Answer	Mark	Notes
9	(a) (b)		Isosceles triangle Rectangle with area $12 \mathrm{~cm}^{2}$	1 2	B1 for isosceles triangle M1 for rectangle drawn A1 cao
10	(a) (b)		A marked at 0 B marked at 1/4	1 1	B1 for A marked at 0 (within overlay) B1 for B marked at $1 / 4$ (within overlay)
11	(a) (b)		9 33	1 2	B1 cao M1for 5×5 or $2 \times 2 \times 2$ or 25 or 8 seen in the working cao seen in the working
12	(a) (b)			2 2	M1 $3 \times 3 \times 3$ oe seen or drawn or 27 seen or use of 3 layers A1 cao B2 for correct view (B1 for or)
13	(a)(i) (ii) (b) (c)		$\begin{gathered} 0729 \\ 36 \\ 0751 \\ 0955 \end{gathered}$	2 1 1	B1 for 0729 B1 for 36 or ft difference between (i) and 0653 B1 cao B1 for 0955 or 955 or five to ten

1MA0_1F					
Question		Working	Answer	Mark	Notes
14		$\begin{aligned} & 2+8+2+8=20 \\ & 20 \div 4= \end{aligned}$	5	4	M2 for $2+8+2+8$ oe or 20 seen or $(2+8) \div 2$ oe (M1 for the sum of 3 sides of the rectangle) M1 (dep) for the sum of 3 or 4 sides of the rectangle $\div 4$ or an attempt to evaluate $(2+8) \div 2$ oe to get the length of one side A1 cao SC: B1 for an answer of 4 coming from $\sqrt{2 \times 8}$ oe
15	(a)		4	1	B1 cao
	(b)	$\begin{aligned} & 9.5-4.75= \\ & \text { OR } \\ & 9.5 \div 2= \end{aligned}$	4.75	2	$\begin{aligned} & \text { M1 for } 9.5-4.75 \text { or } 9.5 \div 2 \text { or } 4.75-9.5 \\ & \text { A1 cao } \end{aligned}$
	(c)		6	1	B1 cao
	(d)	$12 \times 4=$	48	2	M1 for $\times 4$ seen or identifying +0.5 for every 2 inches or $12+12+12+12$ oe or build up method eg 12, 24, 36, 48 allow one error A1 cao
16	(a)		trapezium	1	B1 for trapezium or isosceles trapezium
	(b)			2	B2 for correct tessellation (at least 5 more shapes) (B1 for at least 4 shapes (including initial shape) correctly tessellating)

1MA0_1F					
Question		Working	Answer	Mark	Notes
19		$\begin{aligned} & 1,96 \times 2.25=4.41 \\ & \text { OR } \\ & 4.23 \div 9=0.47 \\ & 1.96 \div 4=0.49 \\ & \text { OR } \\ & 4.23 \times 4=16.92 \\ & 1.96 \times 9=17.64 \\ & \mathbf{O R} \\ & 4.23 \div 9=0.47 \\ & 0.47 \times 4=1.88 \\ & \mathbf{O R} \\ & 1.96 \div 4=0.49 \\ & 0.49 \times 9=4.41 \\ & \mathbf{O R} \\ & 9 \div 4.23=2.12 \\ & 4 \div 1.96=2.04 \end{aligned}$	Pack of 9	3	M2 for a fully correct method to enable a conclusion eg $1.96 \times 2^{1 / 4}$ OR M1 for $4.23 \div 9$ or $423 \div 9$ or 0.47 seen or 47 seen M1 for $1.96 \div 4$ or $196 \div 4$ or 0.49 seen or 49 seen OR M1 for 4.23×4 or 423×4 or 16.92 seen or 1692 seen M1 for 1.96×9 or 196×9 or 17.64 seen or 1764 seen OR M1 for $4.23 \div 9$ or $423 \div 9$ or 0.47 seen or 47 seen M1 for 0.47×4 or 47×4 or 1.88 seen or 188 seen OR M1 for $1.96 \div 4$ or $196 \div 4$ or 0.49 seen or 49 seen M1 for 0.49×9 or 49×9 or 4.41 seen or 441 seen OR M1 for $9 \div 4.23$ or $2.12(\ldots)$ seen or 2.13 seen M1 for $4 \div 1.96$ or $2.04(\ldots)$ seen A1 for Pack of 9 and fully correct calculations NOTE: B0 for an answer of 9 not supported by working.
20	(a)		6	1	B1 cao
	(b)		44	1	B1 cao
			31	2	M1 for 60-29 or 29-60 or any correct method that is attempting to find the difference between 29 and 60 (allow 1 arithmetic error) A1 cao

1MA0_1F					
Question		Working	Answer	Mark	Notes
21*		Angle $D B C=(180-50) \div 2$ Base angles of isosceles triangle are equal Angle $A B D=180-65$ Angles on a straight line add up to $\underline{180}$ $x=180-20-115$ Angles in a triangle add up to $\underline{180}$ OR Angle $D B C=(180-50) \div 2$ Base angles of isosceles triangle are equal $x=65-20$ Exterior angle of triangle is equal to sum of interior opposite angles OR Angle $D C B=(180-50) \div 2$ Base angles of isosceles triangle are equal $x=180-50-20-65$ Angles in a triangle add up to $\underline{180}$	45 with reasons	4	M1 for $(180-50) \div 2$ oe or 65 seen M1 for $180-20-(180-" 65 ")$ or " $65 "-20$ or $180-50-20-‘ 65$ " oe C2 for x identified as 45 with full reasons QWC: Reasons clearly laid out with correct geometrical language used (C1 (dep on M1) for one reason QWC: Reasons clearly laid out with correct geometrical language used) NOTE: $x=45$ with no working or without any correct angles marked on the diagram cannot score.

1MA0_1F					
Question		Working	Answer	Mark	Notes
24		Acton after 24, 48, 72, 96, .. Barton after 20, 40, 60, 80, .. LCM of 20 and 24 is 120 9:00 am +120 minutes OR Acton after 24, 48, 1h 12 min... Barton after 20, 40, 1 h LCM is 2 hours 9:00 am + 2 hours OR Times from 9:00 am when each service leaves the bus station Acton at 9:24, 9:48, 10:12.. Barton at 9:20, 9:40, 10:00.. OR $\begin{aligned} & 20=2 \times 2 \times 5 \\ & 24=2 \times 2 \times 2 \times 3 \\ & 2 \times 2 \times 2 \times 3 \times 5=120 \end{aligned}$	11:00 am	3	M1 for listing multiples of 20 and 24 with at least 3 numbers in each list ; multiples could be given in minutes or in hours and minutes (condone one addition error in total in first 3 numbers in lists) A1 identify 120 (mins) or 2 (hours) as LCM A1 for 11:00 (am) or 11(am) or 11 o'clock OR M1 for listing times after 9am when each bus leaves the bus station, with at least 3 times in each list (condone one addition error in total in first 3 times after 9am in lists) A1 for correct times in each list up to and including 11:00 A1 for 11:00 (am) or 11(am) or 11 o'clock OR M1 for correct method to write 20 and 24 in terms of their prime factors 2, 2, 5 and 2, 2, 2, 3 (condone one error) A1 identify 120 as LCM A1 for 11:00 (am) or 11(am) or 11 o'clock

1MA0_1F					
Question		Working	Answer	Mark	Notes
25	(a)		$6 y-15$	1	B1 cao
	(b)		$4 x(2 x+y)$	2	$\begin{array}{lll} \text { B2 cao } & & \\ \text { (B1 } & \text { for } & x(8 x+4 y) \\ & \text { or } & 2 x(4 x+2 y) \\ & \text { or } & 4\left(2 x^{2}+x y\right) \\ & \text { or } & 4 x(a x+b y) \\ & \text { or } & a x(2 x+y) \quad \text { where } a, b \text { are positive integers } \\ & \text { or } & 4 x(2 x \square y) \end{array}$
	(c)	$\begin{aligned} & 10 t=g h \\ & h=\frac{10 t}{g} \end{aligned}$	$\frac{10 t}{g}$	2	M1 for clear intention to multiply both sides of the equation by 10 (eg. $\times 10$ seen on both sides of equation) or clear intention to divide both sides of the equation by g (eg. $\div \mathrm{g}$ seen on both sides of equation) or $10 t=g h$ or $\frac{t}{g}=\frac{h}{10}$ or fully correct reverse flow diagram eg. $\leftarrow \times 10 \leftarrow \div g \leftarrow$ A1 for $\frac{10 t}{g}$ oe

1MA0_1F					
Question		Working	Answer	Mark	Notes
26	(a)	$\begin{aligned} & 2 \times 5 \times 2=20 \\ & 300 \div 20= \end{aligned}$	15	3	M2 for $300 \div(2 \times 5 \times 2)$ oe (M1 for $2 \times 5 \times 2$ or 20 seen or $300 \div(2 \times 5)$ or A1 cao seen
	(b)	$c=\frac{30 \times 40}{150}=$	8	2	M1 for $\frac{30 \times 40}{150}$ or 1200 seen A1 cao
27		$\begin{aligned} & 3 x-15=2 x+24 \\ & x=39 \\ & \text { OR } \\ & 2 x+3 x-15+2 x+2 x+24=360 \\ & 9 x+9=360 \\ & 9 x=351 \\ & x=39 \\ & \\ & \text { OR } \\ & 2 x+2 x+24=180 \\ & 4 x+24=180 \\ & 4 x=156 \\ & x=39 \\ & \\ & \text { OR } \\ & 2 x+3 x-15=180 \\ & 5 x-15=180 \\ & 5 x=195 \\ & x=39 \end{aligned}$	39	3	

