June 2012

1MA	.0_1F				
Qu	estion	Working	Answer	Mark	Notes
1	(a)		380	1	B1 cao
	(b)		6.2	1	B1 cao
	(c)		Arrow at 34	1	B1 cao
2	(a)		8	1	B1 for 8 ± 0.2
	(b)		35	1	B1 for $35 \pm 2^{\circ}$
	(c)		Circle drawn	1	B1 for all parts within ± 2 mm, (use overlay)
3	(a)		4, 7, 4, 3, 2	2	 M1 for at least 3 correct tallies or at least 3 correct frequencies A1 for all frequencies correct
	(b)		7	1	B1 for 7 or ft from frequencies in (a) or tallies if no frequencies
	(c)		Diagram drawn	3	 M1 for bar chart or other suitable chart with at least 3 correct heights for their scale (can f.t.) A1 for all 5 bars correctly labelled and vertical axis correctly scaled A1 for fully correct or ft frequencies in (a) OR M1 for pictogram with at least 3 correct rows (can f.t.) A1 for correct labels on all 5 rows and correctly key A1 for fully correct or ft frequencies in (a) OR
					M1 for pie chart with at least 3 correct sectors $\pm 2^{\circ}$ (can f.t.) A1 for all 5 sectors correctly labelled A1 for fully correct or ft frequencies in (a)

1MA	1MA0_1F								
Question Working An		Answer	Mark	Notes					
4		$\pounds 1.18 + 94p = \pounds 2.12$ $\pounds 5 - \pounds 2.12 - 30p$ $= \pounds 2.58$ $\pounds 2.58 \div 2 =$	1.29	3	M2 for $(5-1.18-0.94-0.30) \div 2$ oe or digits 129 (M1 for $1.18+0.94$ or 2.12 seen or $1.18+0.94+0.30$ oe or 2.42 seen or $5-1.18-0.94$ oe or 2.88 seen or $(5-1.18-0.94) \div 2$ or 1.44 seen or $5-1.18-0.94-0.30$ oe or 2.58 seen) A1 cao NOTE: Accept working in £ or pence				
5	(a)(i)		(2, 3)	2	B1 cao				
	(ii)		(-3, 1)		B1 cao				
	(b)		Point plotted at $(3, -4)$	1	B1 cao				
6	(a)		- 5	1	B1 cao				
	(b)		6	1	B1 for 6 or – 6				
	(c)		3	1	B1 cao				
7			(P, B), (P, S), (P, L) (M, B), (M, S), (M, L) (H, B), (H, S), (H, L)	2	M1 for any 3 combinations with no incorrect combinations A1 for all 9 combinations with no duplicates or extras				
8	(a)		Walk	1	B1 cao				
	(b)	24 ÷ 4 =	6	2	M1 for $24 \div 4$ oe or $\frac{1}{4}$ oe seen A1 cao				

1MA	.0_1F				
Qu	estion	Working	Answer	Mark	Notes
9	(a)		Isosceles triangle	1	B1 for isosceles triangle
	(b)		Rectangle with area 12 cm^2	2	M1 for rectangle drawn A1 cao
10	(a)		A marked at 0	1	B1 for A marked at 0 (within overlay)
	(b)		B marked at 1/4	1	B1 for B marked at 1/4 (within overlay)
11	(a)		9	1	B1 cao
	(b)		33	2	M1for 5×5 or $2 \times 2 \times 2$ or 25 seen in the working or 8 seen in the workingA1cao
12	(a)		20	2	$\begin{array}{cccc} M1 & 3 \times 3 \times 3 \text{ oe} & \text{seen or drawn} & \text{or} & 27 \text{ seen} & \text{or use of } 3 \text{ layers} \\ A1 & \text{cao} \end{array}$
	(b)			2	B2 for correct view (B1 for or)
13	(a)(i)		07 29	2	B1 for 07 29
	(ii)		36		B1 for 36 or ft difference between (i) and 06 53
	(b)		07 51	1	B1 cao
	(c)		09 55	1	B1 for 09 55 or 9 55 or five to ten

1MA	1MA0_1F								
Qu	estion	Working	Answer	Mark	Notes				
14		2+8+2+8=20 $20 \div 4=$	5	4	M2for $2 + 8 + 2 + 8$ oeor 20 seenor $(2 + 8) \div 2$ oe(M1forthe sum of 3 sides of the rectangle)M1(dep)forthe sum of 3 or 4 sides of the rectangle $\div 4$ oran attempt to evaluate $(2 + 8) \div 2$ oe to get the length of one sideA1caoSC:B1 for an answer of 4 coming from $\sqrt{2 \times 8}$ oe				
15	(a)		4	1	B1 cao				
	(b)	9.5 - 4.75 = OR $9.5 \div 2 =$	4.75	2	M1 for $9.5 - 4.75$ or $9.5 \div 2$ or $4.75 - 9.5$ A1 cao				
	(c)		6	1	B1 cao				
	(d)	12 × 4 =	48	2	M1 for ×4 seen or identifying + 0.5 for every 2 inches or 12 + 12 + 12 + 12 oe or build up method eg 12, 24, 36, 48 allow one error A1 cao				
16	(a)		trapezium	1	B1 for trapezium or isosceles trapezium				
	(b)			2	B2 for correct tessellation (at least 5 more shapes)(B1 for at least 4 shapes (including initial shape) correctly tessellating)				

1MA0_1F				
Question	Working	Answer	Mark	Notes
17*	S: $35 \div 100 \times 40 = 14$ W: $40 \div 8 \times 3 = 15$ OR D: $16 \div 40$ (× 100) = 0.4 (40%) W: $3 \div 8$ (× 100) = 0.375 (37.5%)	Debbie and correct calculations	4	Trocolspan="2">Trocolspan="2" Trocolspan="2" Trocols
	OR D: $\frac{16}{40} = \frac{80}{200}$ S: $\frac{35}{100} = \frac{70}{200}$ W: $\frac{3}{8} = \frac{75}{200}$			 OR Compares Fractions with denominator other than 40 M1 for attempt to convert all to fractions with a common denominator other than 40 M1 for at least 1 correct A1 for ⁸⁰/₂₀₀ and ⁷⁰/₂₀₀ and ⁷⁵/₂₀₀ oe C1 (dep on M1) for correct conclusion for their working QWC with 3 comparable fractions: Decision and justification should be clear with working clearly presented and attributable.

1MA0_1F	1MA0_1F							
Question	Working	Answer	Mark	Notes				
18* (a) (b)	$\frac{1}{10} \frac{1}{10} \frac$	10 Ed is cheaper up to 20 miles, Bill is cheaper for more than 20 miles	1 3	 B1 cao M1 for correct line for Ed intersecting at (20,30) ±1 sq tolerance or 10 + x = 1.5x oe C2 (dep on M1) for a correct full statement ft from graph eg. Ed cheaper up to 20 miles and Bill cheaper for more than 20 miles (C1 (dep on M1) for a correct conclusion ft from graph eg. cheaper at 10 miles with Ed ; eg. cheaper at 50 miles with Bill eg. same cost at 20 miles; eg for £5 go further with Bill or A general statement covering short and long distances eg. Ed is cheaper for long distances) OR (continued on next page) 				

1MA0	1 F				
Ques	tion	Working	Answer	Mark	Notes
18 (contd)					ORM1for correct method to work out Ed's delivery cost for at least 2 values of n miles where $0 < n \le 50$ orfor correct method to work out Ed and Bill's delivery cost for n miles where $0 < n \le 50$ C2 (dep on M1)for 20 miles linked with £30 for Ed and Bill with correct full statement

1MA0_1	F				
Questic	on	Working	Answer	Mark	Notes
19		$1,96 \times 2.25 = 4.41$ OR $4.23 \div 9 = 0.47$ $1.96 \div 4 = 0.49$ OR $4.23 \times 4 = 16.92$ $1.96 \times 9 = 17.64$ OR $4.23 \div 9 = 0.47$ $0.47 \times 4 = 1.88$ OR $1.96 \div 4 = 0.49$ $0.49 \times 9 = 4.41$ OR $9 \div 4.23 = 2.12$ $4 \div 1.96 = 2.04$	Pack of 9	3	M2for a fully correct method to enable a conclusion eg $1.96 \times 2^{1/4}$ ORM1for $4.23 \div 9$ or $423 \div 9$ or 0.47 seen or 47 seen M1M1for $1.96 \div 4$ or $196 \div 4$ or 0.49 seen or 49 seen ORM1for 4.23×4 or 423×4 or 16.92 seen or 1692 seen M1M1for 4.23×4 or 423×4 or 16.92 seen or 1692 seen M1M1for 4.23×4 or 423×4 or 16.92 seen or 1692 seen M1M1for $4.23 \div 9$ or 196×9 or 17.64 seen or 1764 seen ORM1for $4.23 \div 9$ or $423 \div 9$ or 0.47 seen or 47 seen M1M1for $4.23 \div 9$ or 47×4 or 1.88 seen or 188 seen ORM1for $1.96 \div 4$ or $196 \div 4$ or 0.49 seen or 49 seen M1M1for $1.96 \div 4$ or $196 \div 4$ or 0.49 seen or 441 seen ORM1for $9 \div 4.23$ or $2.12()$ seen or 2.13 seen M1M1for $9 \div 4.23$ or $2.04()$ seen A1A1for an answer of 9 not supported by working.
20	(a)		6	1	B1 cao
	(b)		44	1	B1 cao
	(c)		31	2	M1 for 60 – 29 or 29 – 60 or any correct method that is attempting to find the difference between 29 and 60 (allow 1 arithmetic error) A1 cao

1MA0_1	F			
Questi	on Working	Answer	Mark	Notes
21*	ONWORKINgAngle $DBC = (180 - 50) \div 2$ Base angles of isosceles triangle areequalAngle $ABD = 180 - 65$ Angles on a straight line add up to 180 $x = 180 - 20 - 115$ Angles in a triangle add up to 180ORAngle $DBC = (180 - 50) \div 2$ Base angles of isosceles triangle areequal $x = 65 - 20$ Exterior angle of triangle is equal tosum of interior opposite anglesORAngle $DCB = (180 - 50) \div 2$ Base angles of isosceles triangle areequal $x = 65 - 20$ Exterior angle of triangle is equal tosum of interior opposite anglesORAngle $DCB = (180 - 50) \div 2$ Base angles of isosceles triangle areequal $x = 180 - 50 - 20 - 65$ Angles in a triangle add up to 180	45 with reasons	4	NotesM1for $(180 - 50) \div 2$ oeor65 seenM1for $180 - 20 - (180 - "65")$ or"65" - 20or $180 - 50 - 20 - 65$ " oeC2for x identified as 45 with full reasonsQWC: Reasons clearly laid out with correct geometrical language used(C1 (dep on M1) for one reasonQWC: Reasons clearly laid out with correct geometrical language used)NOTE: $x = 45$ with no working or without any correct angles marked on the diagram cannot score.

1MA	0 1F				
Qu	estion	Working	Answer	Mark	Notes
22	(a)	$360 \div 60 = 6$ $300 \div 60 = 5$ $6 \times 5 =$	Yes and 30	3	 M1 for dividing side of patio by side of paving slab eg 360 ÷ 60 or 300 ÷ 60 or 3.6 ÷ 0.6 or 3 ÷ 0.6 or 6 and 5 seen or 6 divisions seen on length of diagram or 5 divisions seen on width of diagram M1 for correct method to find number of paving slabs eg (360 ÷ 60) × (300 ÷ 60) oe or 6 × 5 or 30 squares seen on diagram (units may not be consistent) A1 for Yes and 30 (or 2 extra) with correct calculations OR M1 for correct method to find area of patio or paving slab eg 360 × 300 or 108000 seen or 60 × 60 or 3600 seen or 3.6 × 3 or 10.8 seen
					or 0.6×0.6 or 0.36 seen M1 for dividing area of patio by area of a paving slab eg. $(3.6 \times 3) \div (0.6 \times 0.6)$ oe (units may not be consistent) A1 for Yes and 30 (or 2 extra) with correct calculations OR M1 for method to find area of patio and area of 32 slabs eg. $60 \times 60 \times 32$ or 360×300
					 M1 for method to find both areas eg. 60 × 60 × 32 and 360 × 300 (units may not be consistent) A1 for Yes and 115200 and 108000 OR Yes and 11.52 and 10.8 NB: Throughout the question, candidates could be working in metres or centimetres

1MA	0_1F				
Qu	estion	Working	Answer	Mark	Notes
22	(b)	$ \begin{array}{r} 1726\\ 25890\\ 27616\\\\ 2 & 3 & 6 & 3\\ 2 & 2 & 4 & 8 & 9\\ 7 & 6 & 1 & 2 & 6\\ 7 & 6 & 1 & 6 & 2\\ \hline 800 & 60 & 3\\ \hline 7 & 6 & 1 & 6 & 2\\ \hline 800 & 60 & 3\\ \hline 30 & 24000 & 1800 & 90\\ \hline 2 & 1600 & 120 & 6\\ \hline 24000 + 1800 + 90\\ + 1600 + 120 + 6\\ = & 27616\\\\ \end{array} $	276.16	3	 M1 for complete correct method with relative place value correct. Condone 1 multiplication error, addition not necessary. OR M1 for a complete grid. Condone 1 multiplication error, addition not necessary. OR M1 for sight of a complete partitioning method, condone 1 multiplication error. Final addition not necessary. A1 for digits 27616 A1 ft (dep on M1) for correct placement of decimal point after addition (of appropriate values) (SC: B1 for attempting to add 32 lots of 8.63)
23	(a)		30	2	M1 for $25 \div 10$ or 2.5 seen or $10 \div 25$ or 0.4 seen or $12+12+6$ oe or a complete method eg. $25 \times 12 \div 10$ oe A1 cao
	(b)	1000 ÷ 200 × 12	60	2	 M1 for 500 ÷ 50 or 1000 ÷ 200 or 500 ÷ 10 or correct scale factor clearly linked with one ingredient eg 10 with sugar or 5 with butter or flour or 50 with milk or an answer of 120 or 600 A1 cao

1MA0_1F				
Question	Working	Answer	Mark	Notes
24	Acton after 24, 48, 72, 96, Barton after 20, 40, 60, 80, LCM of 20 and 24 is 120 9:00 am + 120 minutes OR Acton after 24, 48, 1h 12 min Barton after 20, 40, 1 h LCM is 2 hours 9:00 am + 2 hours OR Times from 9:00 am when each service leaves the bus station Acton at 9:24, 9:48, 10:12 Barton at 9:20, 9:40, 10:00 OR $20 = 2 \times 2 \times 5$ $24 = 2 \times 2 \times 2 \times 3$ $2 \times 2 \times 2 \times 3 \times 5 = 120$	11:00 am	3	 M1 for listing multiples of 20 and 24 with at least 3 numbers in each list; multiples could be given in minutes or in hours and minutes (condone one addition error in total in first 3 numbers in lists) A1 identify 120 (mins) or 2 (hours) as LCM A1 for 11:00 (am) or 11(am) or 11 o'clock OR M1 for listing times after 9am when each bus leaves the bus station, with at least 3 times in each list (condone one addition error in total in first 3 times after 9am in lists) A1 for correct times in each list up to and including 11:00 A1 for 11:00 (am) or 11(am) or 11 o'clock OR M1 for correct method to write 20 and 24 in terms of their prime factors 2, 2, 5 and 2, 2, 2, 3 (condone one error) A1 identify 120 as LCM A1 for 11:00 (am) or 11(am) or 11 o'clock

1MA0_1F									
Question		Working	Answer	Mark	Notes				
25	(a)		6 <i>y</i> – 15	1	B1 cao				
	(b)		4x(2x+y)	2	B2 cao (B1 for $x(8x + 4y)$ or $2x(4x + 2y)$ or $4(2x^2 + xy)$ or $4x(ax + by)$ where <i>a</i> , <i>b</i> are positive integers or $ax(2x + y)$ where <i>a</i> is a positive integer or $4x(2x \Box y)$)				
	(c)	$10t = gh$ $h = \frac{10t}{g}$	$\frac{10t}{g}$	2	M1 for clear intention to multiply both sides of the equation by 10 (eg. ×10 seen on both sides of equation) or clear intention to divide both sides of the equation by g (eg. \div g seen on both sides of equation) or $10t = gh$ or $\frac{t}{g} = \frac{h}{10}$ or fully correct reverse flow diagram eg. $\leftarrow \times 10 \leftarrow \div g \leftarrow$ A1 for $\frac{10t}{g}$ oe				

June	2012
------	------

1MA0_1F								
Qu	estion	Working	Answer	Mark	Notes			
26	(a)	$2 \times 5 \times 2 = 20$ $300 \div 20 =$	15	3	M2 for $300 \div (2 \times 5 \times 2)$ oe (M1 for $2 \times 5 \times 2$ or 20 seen or $300 \div (2 \times 5)$ or 30 seen A1 cao			
	(b)	$c = \frac{30 \times 40}{150} =$	8	2	M1 for $\frac{30 \times 40}{150}$ or 1200 seen A1 cao			
27		3x-15 = 2x+24 x = 39 OR 2x+3x-15 + 2x+ 2x+24 = 360 9x + 9 = 360 9x = 351 x = 39 OR 2x + 2x+24 = 180 4x + 24 = 180 4x = 156 x = 39 OR 2x + 3x-15 = 180 5x - 15 = 180 5x = 195 x = 39	39	3	M1 for forming an appropriate equation eg $3x - 15 = 2x + 24$ or $2x + 3x - 15 + 2x + 2x + 24 = 360$ oe or $2x + 2x + 24 = 180$ oe or $2x + 3x - 15 = 180$ oe or $2x + 3x - 15 = 2x + 2x + 24$ M1 (dep) for correct operation(s) to isolate x and non-x terms in an equation to get ax = b A1 cao OR M2 for $\frac{351}{9}$ or $\frac{195}{5}$ or $\frac{156}{4}$ oe A1 cao			