March 2012

1380_3	1380_3H						
Que	stion	Working	Answer	Mark	Notes		
1	(a)		a+2b	2	M1 for $2a - a$ (=a) or $3b - b$ (=2b) A1 for $a + 2b$ or $1a + 2b$		
	(b)		8m - 12n	1	B1 cao		
2		$\frac{60.2 \times 0.799}{223} \approx \frac{60 \times 0.8}{200} = \frac{48}{200} = 0.24$	0.24	3	B1 for any two of 60, 0.8, 200 seen or 48 seen M1 for at least one of 60, 0.8, 200 and a correct method to begin to evaluate eg. the numerator may be correctly evaluated or a correctly simplified fraction (NB. fraction may not be fully simplified) A1 for answer in the range 0.15 to 0.3 from correct working		

1380_3H				
Question	Working	Answer	Mark	Notes
3 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.66	3	M1 for a complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation A1 for 42.66(p) OR M1 for a complete grid with not more than 1 multiplication error, addition not necessary. M1 (dep) for addition of all the appropriate elements of the calculation A1 for 42.66(p) OR M1 for sight of a complete partitioning method, condone 1 multiplication error, addition not necessary. M1 (dep) for addition of the all the appropriate elements of the calculation A1 cao OR M2 for repeated addition, exactly 18 seen A1 for 42.66(p)
(b)	$10\% \text{ of } 85 = 85 \div 10$ 85 - 8.5 Or $90\% \text{ of } 85 = (85 \div 10) \times 9$	£76.50	3	M1 for $\frac{10}{100} \times 85$ or $85 \div 10$ (=8.5) oe M1 (dep) for $85 - `8.5`$ A1 £76.50(p) or £76.5(p) OR M2 for $\frac{90}{100} \times 85$ or $(85 \div 10) \times 9$ oe A1 £76.50(p) or £76.5(p)

1380_3	1380_3H							
Que	stion	Working	Answer	Mark	Notes			
4	(a)		150	1	B1 for 150 or 150°			
	(b)		95	2	B1 for 95 or 95° B1 for full reasons, eg. <u>alternate</u> angles are equal and the sum of angles on a straight <u>line</u> is <u>180</u> OR the sum of angles on a straight <u>line</u> is <u>180</u> and <u>corresponding</u> angles are equal OR vertically <u>opposite</u> angles and <u>co-interior</u> (or <u>allied</u> or <u>supplementary</u>) angles			

1380_3	ВН				
Que	stion	Working	Answer	Mark	Notes
5	(a)		7/12	2	M1 for $\frac{6+1}{5+6+1}$ or $1-\frac{5}{12}$ or $\frac{7}{n}$ where $n > 7$ or $\frac{k}{12}$ where $k < 12$ A1 for $\frac{7}{12}$ oe eg. 0.58(33) SC: Award B1 for $7: 12$ or 7 out of 12 or 7 in 12 oe
	(b)	$\frac{1}{3} = \frac{5}{15} \text{ or } 1: 3 = 5:15 \ 15 - 5 - 6 = 4$ $\frac{x+12}{5} = 3, x = 3, 3+1$ OR	4	2	M1 $\frac{1}{3} = \frac{5}{15}$ or 15 seen or 3 more green A1 cao OR M1 $\frac{x+12}{5} = 3$ A1 cao SC: Award B1 for an answer of $\frac{4}{15}$

1380 3	1380_3H							
Que	stion	Working	Answer	Mark	Notes			
6		$1500 \div 175 = 8\frac{4}{7}$	8	4	B1 1500 or 0.175 M1 '1500' ÷ 175 oe M1 evidence of correct method to evaluate '1500'÷175 eg. can be implied by a division sum or a cancelled down fraction A1 8 cao OR B1 1500 or 0.175 M2 at least 8 repeated additions of 175 or at least 8 repeated subtractions of 175 from 1500 or $8 \times 175 \ (=1400) \ \text{or} \ 9 \times 175 \ (=1575)$ (M1 at least 4 repeated additions of 175 or at least 4 repeated subtractions of 175 from 1500 or $n \times 175 \ \text{where} \ n = 4 \ \text{or} \ 5 \ \text{or} \ 6 \ \text{or} \ 7 \ \text{or} \ 10)$ A1 8 cao NB: Work could be in m <i>l</i> throughout			

1380 3H				
Question	Working	Answer	Mark	Notes
7 (a)	6 1 7	Correct Stem and Leaf diagram	3	B2 for a fully correct ordered diagram. (B1 for ordered with at most 2 errors or omissions or for correct unordered diagram) B1 for a correct key (Accept a stem of 60, 70 etc but key only acceptable if consistent with this)
(b)		87.5	2	M1 (ft ordered stem and leaf diagram) for median value is 9.5^{th} as evidenced by 9^{th} and 10^{th} seen or '86, 89'written or both ringed in the stem and leaf diagram or in a fully ordered list (with at most 2 errors or omissions) or indicated in an unambiguous way circled (ft stem and leaf diagram) or ('86' + '89') \div 2 (condone missing brackets) or 7.5 clearly coming from $(6+9) \div 2$ A1 for 87.5 or ft ordered stem and leaf diagram

1380 3	BH				
Que	stion	Working	Answer	Mark	Notes
8	(a)	13x+1=11x+8 13x-11x=8-1 or 1-8=11x-13x	3.5	2	M1 for showing the intention to isolate either the algebraic or the numerical terms in an equation e.g. $13x - 11x$ or $8 - 1$ A1 for 3.5 or $3\frac{1}{2}$ or $\frac{7}{2}$ oe
	(b)	Substitute $y = -2$ into $\frac{4}{y} + y = 2y$ LHS = $\frac{4}{-2} + (-2) = -4$ RHS = $2 \times (-2) = -4$ OR $4 + y^2 = 2y^2$ $y^2 = 4$ $y = \pm 2$	Shown	2	M1 for substituting $y = -2$ into $\frac{4}{y} + y = 2y$ or $\frac{4}{-2} + -2 = 2 \times -2$ or any correct rearrangement A1 for showing that LHS & RHS both $= -4$ OR M1 $4 + y^2 = 2y^2$ A1 $y = \pm 2$ from a correct process
9			S = 20B + 30T	3	B3 for $S = 20B + 30T$ oe (B2 for $20B + 30T$ or $S = 20B + T$ or $S = B + 30T$ or S = 30B + 20T) (B1 for $S =$ a linear expression in B and T , or $20B$ or $30T$)
10		$2 \times 5 : 3 \times 10 = 10 : 30 = 1 : 3$	1:3	2	M1 2 × 5 : 3 × 10 or 2 × 1 : 3 × 2 or sight of 10 and 30 or 10p and 30p A1 for 1 : 3 cao (SC B1 for 3 : 1 or 1p : 3p or 10 : 30 or 5 : 15 or 10p : 30p)

1380_3H	1380_3H								
Question	Working	Answer	Mark	Notes					
11	OR			OR					
(contd)	AN = 3 cm or $BN = 9$ cm			B1 $AN = 3$ or $BN = 9$ or $CM = 6$ or $MB = 6$					
	Area of $CNM = \frac{1}{2} \times 6 \times 9 = 27 \text{ cm}^2$			M2 Area of $CNM = \frac{1}{2} \times 6' \times 9'$ (=27)					
	Area of $CND = \frac{1}{2} \times 12 \times 12 = 72 \text{ cm}^2$			M1 Area of $CND = \frac{1}{2} \times 12 \times 12 (= 72)$					
	Area of shaded region = $72 + 27$			M1 (dep on at least 1 previous M1) for '72' + '27' A1 cao					
	OR								
	Area of $PDN = \frac{1}{2} \times '3' \times 12 = 18 \text{ cm}^2$			OR B1 $AN = 3$ or $BN = 9$ or $CM = 6$ or $MB = 6$					
	Area of <i>CMNP</i> = $\frac{1}{2}$ × (12+'6')×'9' =81			M1 Area of $PDN = \frac{1}{2} \times '3' \times 12 $ (=18)					
	cm ² Area of shaded region =18 + 81			M2 Area of $CMNP = \frac{1}{2} \times (12 + 6') \times 9'$ (=81)					
				M1 (dep on at least 1 previous M1) for '18' + '81'					
				A1 cao					

1380_3	1380_3H							
Que	stion	Working	Answer	Mark	Notes			
12	(a)		Correct frequency polygon	2	B2 Fully correct polygon - points plotted at the midpoint ± ½ square (B1 All points plotted accurately not joined or one error in plotting or one omission but joined or all points plotted accurately and joined with first joined to last or all points at the correct heights and consistently within or at the ends of the intervals and joined (can include joining last to first to make a polygon)).			
	(b)		$0 \le L < 10$	1	B1 $0 \le L < 10$ or $0 - 10$ oe			

1380_3	ВН				
Que	stion	Working	Answer	Mark	Notes
14	(a)		643000	1	B1 cao
	(b)	$2 \times 10^7 \times 8 \times 10^{-12} = 16 \times 10^{7-12} = 16 \times 10^{-5} = 1.6 \times 10^{-4}$	1.6×10 ⁻⁴	2	M1 for $16 \times 10^{7-12}$ or 16×10^{-5} or 0.00016 or 1.6×10^n where n is an integer or $\frac{16}{100000}$ oe or $\frac{16}{100000}$ simplified correctly A1 cao
15	(a)		2x(x-2y)	2	B2 cao (B1 $2x$ (linear expression) or $x(2x-4y)$ or $2(x^2-2xy)$ or $nx(x-2y)$ where n is an integer)
	(b)	$p^2 - 6p + 8$	(p-4)(p-2)	2	M1 for $(p \pm 4)(p \pm 2)$ or $(p + a)(p + b)$ with $a,b \neq 0$, $a + b = -6$ or $ab = 8$ or $p(p-2) - 4(p-2)$ or $p(p-4) - 2(p-4)$ A1 (accept others letters)
	(c)	$\frac{(x+2)^2}{x+2} = \frac{(x+2)}{1}$	<i>x</i> + 2	1	B1 $x + 2$ or $\frac{(x+2)}{1}$
	(d)		$6a^5b^2$	2	B2 cao (B1 exactly 2 out of 3 terms correct in a product or a^5b^2 or $6a^{2+3}b^{1+1}$)

1380	1380_3H							
Que	stion	Working	Answer	Mark	Notes			
16			Correct box plot	3	M1 for 32 + 38 (=70) or UQ as 70, may be stated or plotted in a diagram M1 for at least 3 correctly plotted points (min 18, LQ 32, median 57, UQ '70', max 86) with box or whiskers drawn in A1 cao SC: B1 for a fully correct box and whisker diagram with min 18, max 86, LQ 32, median 38, UQ 57			
17	(a)	$\frac{ED}{8} = \frac{6}{4} ED = 12$	12	2	M1 for $\frac{6}{4}$ oe or $\frac{4}{6}$ oe or $\frac{8}{4}$ oe or $\frac{4}{8}$ oe (accept all these written as ratios) A1 cao			
	(b)	$\frac{2}{5} \times 25$ OR $4: 6 = AC: CD$ $(25 \div (4+6)) \times 4$	10	2	M1 $\frac{2}{5} \times 25$ oe A1 cao OR M1 $(25 \div (4+6)) \times 4$ A1 cao OR M1 for $25 \div (1+1.5)$ A1 cao			

1380_	3H				
Que	estion	Working	Answer	Mark	Notes
18	(a)	Correct probs.	Correct probs.	2	B1 $\frac{3}{8}$ on 1 st branch B1 $\frac{3}{7}$, $\frac{5}{7}$, $\frac{2}{7}$ correctly placed
	(b)	RG, or GR $\frac{5}{8} \times \frac{3}{7} + \frac{3}{8} \times \frac{5}{7}$ OR A full sample space R R R R R G G G R -	30 56		M1 (ft from diag) for any one correct product M1 (ft from diag) for $\frac{5}{8} \times \frac{3}{7} + \frac{3}{8} \times \frac{5}{7}$ oe or $1 - \left(\frac{5}{8} \times \frac{4}{7} + \frac{3}{8} \times \frac{2}{7}\right)$ oe A1 $\frac{30}{56}$ oe OR M1 for a complete 8 by 8 or 8 by 7 table M1 for all RG and GR identified A1 $\frac{30}{56}$ oe SC with replacement M1 $\frac{5}{8} \times \frac{3}{8}$ M1 $\frac{5}{8} \times \frac{3}{8} + \frac{3}{8} \times \frac{5}{8}$ or $\frac{30}{64}$ A0 SC: If no working then B1 for $\frac{30}{64}$

1380_	1380_3H							
Que	estion	Working	Answer	Mark	Notes			
19	(a)	A = 1 - BOD = 1000	50° reason	2	B2 for Angle $BAD = 50$ and the sum of <u>opposite angles</u> in a <u>cyclic quadrilateral</u> is <u>180</u> (B1 for angle $BAD = 50$ or angle $BAD = 180 - 130$)			
	(b)	Angle $BOD = 100^{\circ}$ Angle $OBD = \text{angle } ODC$ Angle $ODC = (360^{\circ} - 230^{\circ}) \div 2 = 65$ OR Reflex angle $BOD = 260$ Angle $BOD = 360 - 260 = 100$ Angle $OBD = \text{angle } ODC$ Angle $ODC = (360^{\circ} - 230^{\circ}) \div 2 = 65$ OR OB = OD Angle $OCD = 130 \div 2 = 65$ and either Angle $OCD = \text{angle } ODC = 65$ Or Angle $COD = 100 \div 2 = 50$ Angle $COD = 180 - (65 + 50) = 65$	65°	4	M1 angle BOD = 100° or ft 2 × their answer to (a) (may be on diagram) M1 $360^{\circ} - (130^{\circ} + "100^{\circ}")$ and $\div 2$ A1 cao B1 The <u>angle</u> at the <u>centre</u> of a circle is <u>twice the angle</u> at the <u>circumference</u> and <u>Angles</u> in a <u>quadrilateral</u> (4 sided shape) add up to 360° or opposite angles of a kite are the same. OR M1 angle $BOD = 100^{\circ}$ or ft 2 × their answer to (a) (may be on diagram) M1 angle $ODB = OBD = 40^{\circ}$ and angle $CBD = $ angle $CBD = 25^{\circ}$ A1 cao B1 The <u>angle</u> at the <u>centre</u> of a circle is <u>twice the angle</u> at the <u>circumference</u> and <u>angles</u> in a <u>triangle</u> add up to 180° or Base <u>angles</u> of an <u>isosceles</u> triangle are <u>equal</u> . or radii of a circle are equal			

1380_3H	1380_3H							
Question	Working	Answer	Mark	Notes				
19b (contd)	Working	Answer	Mark	Notes OR M1 for obtuse Angle $BOD = 2 \times 130 (=260)$ (may be on diagram) M1 for $(360 - (360 - 260) - 130) \div 2$ A1 cao B1 for angle at the centre is twice the angle at the circumference and sum of the angles in a quadrilateral is 360° or equal opposite angles in a kite OR M1 Angle $OCD = 130 \div 2$ M2 Angle $OCD = 130 \div 2$ M3 Angle $OCD = 130 \div 2$ M4 Angle $OCD = 130 \div 2$ M5 Angle $OCD = 130 \div 2$ M6 Angle $OCD = 130 \div 2$ M7 Angle $OCD = 130 \div 2$ M8 Angle $OCD = 130 \div 2$ M9 Angle $OCD = 130 \div 2$ M1 Angle $OCD = 130 \div 2$ M1 Angle $OCD = 130 \div 2$ M1 Angle $OCD = 130 \div 2$ M2 Angle $OCD = 130 \div 2$ M3 Angle $OCD = 130 \div 2$ M4 Angle $OCD = 130 \div 2$ M5 Angle $OCD = 130 \div 2$ M6 Angle $OCD = 130 \div 2$ M7 Angle $OCD = 130 \div 2$ M8 Angle $OCD = 130 \div 2$ M9 Angle $OCD = 130 \div 2$ M1 Angle $OCD = 130 \div 2$ M2 Angle $OCD = 130 \div 2$ M3 Angle $OCD = 130 \div 2$ M4 Angle $OCD = 130 \div 2$ M6 Angle $OCD = 130 \div 2$ M7 Angle $OCD = 130 \div 2$ M8 Angle $OCD = 130 \div 2$ M9 Angle $OCD = 130 \div 2$ M1 Angle $OCD = 130 \div 2$ M1 Angle $OCD = 130 \div 2$ M1 Angle $OCD = 130 \div 2$ M2 Angle $OCD = 130 \div 2$ M3 Angle $OCD = 130 \div 2$ M4 Angle $OCD = 130 \div 2$ M6 Angle $OCD = 130 \div 2$ M7 Angle $OCD = 130 \div 2$ M8 Angle $OCD = 130 \div 2$ M8 Angle $OCD = 130 \div 2$ M9 Angle $OCD = 130 \div 2$ M1 Angle $OCD = 130 \div 2$ M1 Angle $OCD = 130 \div 2$ M1 Angle $OCD = 130 \div 2$ M2 Angle $OCD = 130 \div 2$ M3 Angle $OCD = 130 \div 2$ M6 Angle $OCD = 130 \div 2$ M7 Angle $OCD = 130 \div 2$ M8 Angle $OCD = 130 \div 2$ M8 Angle $OCD = 130 \div 2$ M8 Angle $OCD = 130$				

1380 3	1380_3H								
Que	stion	Working	Answer	Mark	Notes				
20			E, B, F, C, D, A	3	B3 all correct (B2 4,5 correct) (B1 2 or 3 correct)				
21	(a)	$P = 3x + \frac{\pi x}{2} = x \left(3 + \frac{\pi}{2} \right)$ $x = \frac{P}{\left(3 + \frac{\pi}{2} \right)}$ $2P = 6x + \pi x = x \left(6 + \pi \right)$ $x = \frac{2P}{\left(6 + \pi \right)}$	$x = \frac{P}{\left(3 + \frac{\pi}{2}\right)}$		M1 for $x\left(3+\frac{\pi}{2}\right)$ A1 for $x = \frac{P}{\left(3+\frac{\pi}{2}\right)}$ oe OR M1 $2P = x(6+\pi)$ A1 $x = \frac{2P}{(6+\pi)}$ oe SC: B1 for $x = \frac{2P}{3+\pi}$ oe or $x = \frac{P}{6+\pi}$ SC Using $\pi = 3.14$, then B1 for $x = \frac{P}{4.57}$ or $\frac{2P}{9.14}$				

1380_3	1380_3H							
Que	stion	Working	Answer	Mark	Notes			
21	(b)	$A = x^2 + \frac{\pi}{2} \left(\frac{x}{2}\right)^2 = \left(1 + \frac{\pi}{8}\right) x^2$	$k = 1 + \frac{\pi}{8}$	3	M1 for $A = x^2 + \frac{\pi}{2} \left(\frac{x}{2}\right)^2$ (condone missing			
					brackets around $\frac{x}{2}$) or $A = x^2 + \frac{\pi}{2} \times \frac{x^2}{4}$ oe			
					M1 for $A = x^2(1 + \frac{\pi}{8})$ oe or $k = 1 + \frac{\pi}{2} \left(\frac{1}{2}\right)^2$			
					A1 cao			
					SC B1 for $A = x^2 + \frac{\pi}{2} \times \frac{x^2}{2}$			
					SC B2 for $k = \left(1 + \frac{\pi}{4}\right)$			

1380_3H	1380_3H							
Question	Working	Answer	Mark	Notes				
22	$(2+\sqrt{2})(3+\sqrt{8}) = 6+2\sqrt{8}+3\sqrt{2}+\sqrt{2}\times\sqrt{8}$	$10 + 7\sqrt{2}$	4	M1 3 or 4 out 4 terms correct				
	$=10+3\sqrt{2}+2\sqrt{8}$			6, $2\sqrt{8}$, $3\sqrt{2}$, $\sqrt{2}\sqrt{8}$ - terms may be simplified				
	$=10+3\sqrt{2}+2\sqrt{8}$			and could be in a list				
	$10+3\sqrt{2}+2\sqrt{8}=10+3\sqrt{2}+2\times2\times\sqrt{2}=10+7\sqrt{2}$			M1 for 10 from $6 + \sqrt{2}\sqrt{8}$				
	$10+3\sqrt{2}+2\sqrt{8}=10+3\sqrt{2}+2\times2\times\sqrt{2}=10+7\sqrt{2}$			B1 $\sqrt{8} = \sqrt{4} \times \sqrt{2}$ oe or $\sqrt{8} = \sqrt{4 \times 2}$				
	OR			A1 $10 + 7\sqrt{2}$ cao				
	$(2+\sqrt{2})(3+\sqrt{8}) = (2+\sqrt{2})(3+2\sqrt{2})$							
				OR				
	$= 6 + 4\sqrt{2} + 3\sqrt{2} + \sqrt{2} \times 2\sqrt{2}$			B1 $\sqrt{8} = \sqrt{4} \times \sqrt{2}$ or $\sqrt{8} = \sqrt{4 \times 2}$				
	$6 + 7\sqrt{2} + \sqrt{2} \times 2\sqrt{2} = 6 + 7\sqrt{2} + 2 \times 2$			M1 3 or 4 out of 4 terms ft from the expansion of				
				$\left(2+\sqrt{2}\right)\left(3+2\sqrt{2}\right)$				
				6, $2\times2\sqrt{2}$, $3\sqrt{2}$, $2\times\sqrt{2}\sqrt{2}$ - terms may be				
				simplified and could be in a list				
				M1 for 10 from $6 + 2 \times \sqrt{2}\sqrt{2}$				
				A1 $10 + 7\sqrt{2}$ cao				

1380_3	1380_3H								
Que	stion	Working	Answer	Mark	Notes				
23	(a)		b – a	1	B1 $\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + \mathbf{b}$				
	(b)	$\overrightarrow{BK} = 2 \times \overrightarrow{AB} = 2 \times (\mathbf{b} - \mathbf{a})$ $\overrightarrow{CK} = \overrightarrow{CB} + \overrightarrow{BK} = \mathbf{a} + 2 \times (\mathbf{b} - \mathbf{a})$	2b – a	3	M1 for a correct vector statement for \overrightarrow{CK} eg. $\overrightarrow{CK} = \overrightarrow{CA} + \overrightarrow{AK}$ or $\overrightarrow{CK} = \overrightarrow{CB} + \overrightarrow{BK}$ M1 for $\overrightarrow{BK} = 2\overrightarrow{AB}$ or $\overrightarrow{BK} = 2(\mathbf{b} - \mathbf{a})$ or $\overrightarrow{AK} = 3\overrightarrow{AB}$ or $\overrightarrow{AK} = 3(\mathbf{b} - \mathbf{a})$ (may be seen as part of a vector equation BUT $2(\mathbf{b} - \mathbf{a})$ or $2(\mathbf{b} - \mathbf{a})$ or $3(\mathbf{b} - \mathbf{a})$ or $3(\mathbf{b} - \mathbf{a})$ by itself does not score M1) A1 $2\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + 2\mathbf{b}$				

1380 3	1380_3H						
Que	stion	Working	Answer	Mark	Notes		
24	(a)	$(a+1)^2 = a^2 + 2a + 1 \neq a^2 + 1$ OR Pick any non-zero value of <i>a</i> and show that LHS \neq RHS	Correctly shown	2	M1 for $(a+1)^2 = a^2 + 2a + 1$ or $a^2 + a + a + 1$ (Expansion must be correct but may not be simplified) A1 for statement that $a^2 + 2a + 1 \neq a^2 + 1$ (eg. they are different)		
		OR $(a+1)^2 = a^2 + 2a + 1$ Solves $a^2 + 2a + 1 = a^2 + 1$ to get $a = 0$ and indicates a contradiction			OR M1 for correct substitution of any integer into both expressions eg. $(2 + 1)^2$ and $2^2 + 1$ A1 for correct evaluation of both expressions and statement that they are not equal (eg. they are different)		
					OR M1 $(a+1)^2 = a^2 + 2a + 1$ or $a^2 + a + a + 1$ A1 Solves $a^2 + 2a + 1 = a^2 + 1$ to get $a = 0$ and indicates a contradiction		
	(b)	$a^{2} + 2a + 1 + b^{2} + 2b + 1 = c^{2} + 2c + 1$ But $a^{2} + b^{2} = c^{2}$ So $2a + 2b + 1 = 2c$	AG	3	M1 use of Pythagoras in either triangle – one of $a^2 + b^2 = c^2$ or $(a + 1)^2 + (b + 1)^2 = (c + 1)^2$ A1 $a^2 + 2a + 1 + b^2 + 2b + 1 = c^2 + 2c + 1$ and $a^2 + b^2 = c^2$ A1 $2a + 2b + 1 = 2c$		
11	(c)	LHS is odd, RHS is even	Explanation	1	B1 eg. LHS is odd, RHS is even or one side is odd and the other side is even oe		

Diagram NOT accurately drawn

