March 2012

1380_3H					
Question		Working	Answer	Mark	Notes
1	(a)		$a+2 b$	2	M1 for $2 \mathrm{a}-\mathrm{a}(=\mathrm{a})$ or $3 b-b(=2 b)$ A1 for $a+2 b$ or $1 a+2 b$
	(b)		$8 m-12 n$	1	B1 cao
2		$\begin{aligned} & \frac{60.2 \times 0.799}{223} \approx \\ & \frac{60 \times 0.8}{200}=\frac{48}{200}=0.24 \end{aligned}$	0.24	3	B1 for any two of $60,0.8,200$ seen or 48 seen M1 for at least one of $60,0.8,200$ and a correct method to begin to evaluate eg. the numerator may be correctly evaluated or a correctly simplified fraction (NB. fraction may not be fully simplified) A1 for answer in the range 0.15 to 0.3 from correct working

Question		Working	Answer	Mark	Notes
4	(a)		150	1	B1 for 150 or 150°
	(b)		95	2	B1 for 95 or 95°
					B1 for full reasons, eg. alternate angles are equal and the sum of angles on a straight line is $\underline{180}$
					OR the sum of angles on a straight line is $\underline{180}$ and corresponding angles are equal
					OR vertically opposite angles and co-interior (or allied or supplementary) angles

1380_3H					
Question		Working	Answer	Mark	Notes
6		$1500 \div 175=8 \frac{4}{7}$	8	4	B1 1500 or 0.175 M1 '1500' $\div 175$ oe M1 evidence of correct method to evaluate '1500' $\div 175$ eg. can be implied by a division sum or a cancelled down fraction A1 8 cao

80					
Question		Working	Answer	Mark	Notes
8	(a)	$\begin{aligned} & 13 x+1=11 x+8 \\ & 13 x-11 x=8-1 \text { or } 1-8=11 x-13 x \end{aligned}$	3.5	2	M1 for showing the intention to isolate either the algebraic or the numerical terms in an equation e.g. $13 x-11 x$ or $8-1$ A1 for 3.5 or $3 \frac{1}{2}$ or $\frac{7}{2}$ oe
	(b)	Substitute $y=-2$ into $\frac{4}{y}+y=2 y$ $\begin{aligned} & \text { LHS }=\frac{4}{-2}+(-2)=-4 \\ & \text { RHS }=2 \times(-2)=-4 \end{aligned}$ OR $\begin{aligned} & 4+y^{2}=2 y^{2} \\ & y^{2}=4 \quad y= \pm 2 \end{aligned}$	Shown	2	M1 for substituting $y=-2$ into $\frac{4}{y}+y=2 y$ or $\frac{4}{-2}+-2=2 \times-2$ or any correct rearrangement A1 for showing that LHS \& RHS both $=-4$ OR M1 $4+y^{2}=2 y^{2}$ A1 $y= \pm 2$ from a correct process
9			$S=20 B+30 T$	3	B3 for $S=20 B+30 T$ oe (B2 for $20 B+30 T$ or $S=20 B+T$ or $S=B+30 T$ or $S=30 B+20 T)$ (B1 for $S=$ a linear expression in B and T, or $20 B$ or $30 T$)
10		$2 \times 5: 3 \times 10=10: 30=1: 3$	1:3	2	M1 $2 \times 5: 3 \times 10$ or $2 \times 1: 3 \times 2$ or sight of 10 and 30 or 10 p and 30 p A1 for 1:3 cao (SC B1 for $3: 1$ or $1 \mathrm{p}: 3$ p or $10: 30$ or $5: 15$ or $10 \mathrm{p}: 30 \mathrm{p}$)

1380_3H				
Question	Working	Answer	Mark	Notes
11	OR			OR
(contd)	$A N=3 \mathrm{~cm}$ or $B N=9 \mathrm{~cm}$			B1 $A N=3$ or $B N=9$ or $C M=6$ or $M B=6$
	Area of $C N M=\frac{1}{2} \times 6 \times 9=27 \mathrm{~cm}^{2}$			$\text { M2 Area of } C N M=\frac{1}{2} \times x^{\prime} 6^{\prime} \times^{\prime} 9^{\prime}(=27)$
	Area of $C N D=\frac{1}{2} \times 12 \times 12=72 \mathrm{~cm}^{2}$			$\text { M1 Area of } C N D=\frac{1}{2} \times 12 \times 12(=72)$
	Area of shaded region $=72+27$			M1 (dep on at least 1 previous M1) for ' 72 ' $+{ }^{\prime} 27$ ' A1 cao
	OR			OR
	Area of $P D N=\frac{-}{2} \times{ }^{\prime}{ }^{\prime} \times 12=18 \mathrm{~cm}^{2}$			B1 $A N=3$ or $B N=9$ or $C M=6$ or $M B=6$
	$\text { Area of } C M N P=\frac{1}{2} \times\left(12++^{\prime} 6^{\prime}\right) \times{ }^{\prime} 9^{\prime}=81$			$\text { M1 Area of } P D N=\frac{1}{2} \times{ }^{\prime} 3^{\prime} \times 12(=18)$
	$\begin{aligned} & \mathrm{cm}^{2} \\ & \text { Area of shaded region }=18+81 \end{aligned}$			$\text { M2 Area of } C M N P=\frac{1}{2} \times\left(12+{ }^{\prime} 6^{\prime}\right) \times{ }^{\prime} 9^{\prime}(=81)$
				M1 (dep on at least 1 previous M1) for ' 18 ' + '81' A1 cao

1380_3H					
Question		Working	Answer	Mark	Notes
14	(a)		643000	1	B1 cao
	(b)	$2 \times 10^{7} \times 8 \times 10^{-12}=16 \times 10^{7-12}=16 \times 10^{-5}=1.6 \times 10^{-4}$	1.6×10^{-4}	2	M1 for $16 \times 10^{7-12}$ or 16×10^{-5} or 0.00016 or 1.6×10^{n} where n is an integer or $\frac{16}{100000}$ oe or $\frac{16}{100000}$ simplified correctly A1 cao
15	(a)		$2 x(x-2 y)$	2	B2 cao (B1 $2 x$ (linear expression) or $x(2 x-4 y)$ or $2\left(x^{2}-2 x y\right)$ or $n x(x-2 y)$ where n is an integer)
	(b)	$p^{2}-6 p+8$	$(p-4)(p-2)$	2	M1 for $(p \pm 4)(p \pm 2)$ or $(p+a)(p+b)$ with $a, b \neq 0, a+b=-6$ or $a b=8$ or $p(p-2)-4(p-2) \text { or } p(p-4)-2(p-4)$ A1 (accept others letters)
	(c)	$\frac{(x+2)^{2}}{x+2}=\frac{(x+2)}{1}$	$x+2$	1	$\text { B1 } x+2 \text { or } \frac{(x+2)}{1}$
	(d)		$6 a^{5} b^{2}$	2	B2 cao (B1 exactly 2 out of 3 terms correct in a product or $a^{5} b^{2}$ or $6 a^{2+3} b^{1+1}$)

1380_3H					
Question		Working	Answer	Mark	Notes
16			Correct box plot	3	M1 for $32+38(=70)$ or UQ as 70, may be stated or plotted in a diagram M1 for at least 3 correctly plotted points (min 18, LQ 32, median 57, UQ ‘70', max 86) with box or whiskers drawn in A1 cao SC : B1 for a fully correct box and whisker diagram with $\min 18$, max 86 , LQ 32 , median 38, UQ 57
17		$\frac{E D}{8}=\frac{6}{4} E D=12$	12	2	M1 for $\frac{6}{4}$ oe or $\frac{4}{6}$ oe or $\frac{8}{4}$ oe or $\frac{4}{8}$ oe (accept all these written as ratios) A1 cao
	(b)	$\begin{aligned} & \frac{2}{5} \times 25 \\ & \text { OR } \\ & 4: 6=A C: C D \\ & (25 \div(4+6)) \times 4 \end{aligned}$	10	2	M1 $\frac{2}{5} \times 25$ oe A1 cao OR $\text { M1 }(25 \div(4+6)) \times 4$ A1 cao OR M1 for $25 \div(1+1.5)$ A1 cao

1380_3H					
Question		Working	Answer	Mark	Notes
19	(a)		$\begin{gathered} 50^{\circ} \\ \text { reason } \end{gathered}$	2	B 2 for Angle $B A D=50$ and the sum of opposite angles in a cyclic quadrilateral is 180 (B1 for angle $B A D=50$ or angle $B A D=180-130$)
	(b)	Angle $B O D=100^{\circ}$ Angle $O B D=$ angle $O D C$ Angle $O D C=\left(360^{\circ}-230^{\circ}\right) \div 2=65$ OR Reflex angle $B O D=260$ Angle $B O D=360-260=100$ Angle $O B D=$ angle $O D C$ Angle $O D C=\left(360^{\circ}-230^{\circ}\right) \div 2=65$ OR $O B=O D$ Angle $O C D=130 \div 2=65$ and either Angle $O C D=$ angle $O D C=65$ Or Angle $C O D=100 \div 2=50$ Angle $O D C=180-(65+50)=65$	65°	4	M 1 angle $\mathrm{BOD}=100^{\circ}$ or $\mathrm{ft} 2 \times$ their answer to (a) (may be on diagram) M1 $360^{\circ}-\left(130^{\circ}+" 100^{\circ} "\right)$ and $\div 2$ A1 cao B1 The angle at the centre of a circle is twice the angle at the circumference and Angles in a quadrilateral (4 sided shape) add up to $\underline{360^{\circ}}$ or opposite angles of a kite are the same. OR M 1 angle $B O D=100^{\circ}$ or ft $2 \times$ their answer to (a) (may be on diagram) M1 angle $O D B=O B D=40^{\circ}$ and angle $C B D=$ angle $C B D=25^{\circ}$ A1 cao B1 The angle at the centre of a circle is twice the angle at the circumference and angles in a triangle add up to 180° or Base angles of an isosceles triangle are equal. or radii of a circle are equal

1380_3H					
Question		Working	Answer	Mark	Notes
20			E, B, F, C, D, A	3	B3 all correct (B2 4,5 correct) (B1 2 or 3 correct)
21	(a)	$\begin{aligned} & P=3 x+\frac{\pi x}{2}=x\left(3+\frac{\pi}{2}\right) \\ & x=\frac{P}{\left(3+\frac{\pi}{2}\right)} \end{aligned}$ OR $\begin{aligned} & 2 P=6 x+\pi x=x(6+\pi) \\ & x=\frac{2 P}{(6+\pi)} \end{aligned}$	$x=\frac{P}{\left(3+\frac{\pi}{2}\right)}$	2	M1 for $x\left(3+\frac{\pi}{2}\right)$ A1 for $x=\frac{P}{\left(3+\frac{\pi}{2}\right)}$ oe OR M1 $2 P=x(6+\pi)$ A1 $x=\frac{2 P}{(6+\pi)}$ oe SC : B1 for $x=\frac{2 P}{3+\pi}$ oe or $x=\frac{P}{6+\pi}$ SC Using $\pi=3.14$, then B1 for $x=\frac{P}{4.57}$ or $\frac{2 P}{9.14}$

1380_3H					
Question		Working	Answer	Mark	Notes
21	(b)	$A=x^{2}+\frac{\pi}{2}\left(\frac{x}{2}\right)^{2}=\left(1+\frac{\pi}{8}\right) x^{2}$	$k=1+\frac{\pi}{8}$	3	M1 for $A=x^{2}+\frac{\pi}{2}\left(\frac{x}{2}\right)^{2} \quad$ (condone missing brackets around $\frac{x}{2}$) or $A=x^{2}+\frac{\pi}{2} \times \frac{x^{2}}{4}$ oe M1 for $A=x^{2}\left(1+\frac{\pi}{8}\right)$ oe or $k=1+\frac{\pi}{2}\left(\frac{1}{2}\right)^{2}$ A1 cao SC B1 for $A=x^{2}+\frac{\pi}{2} \times \frac{x^{2}}{2}$ $\mathbf{S C B}$ 2 for $k=\left(1+\frac{\pi}{4}\right)$

1380 _3H					
Question		Working	Answer	Mark	Notes
22		$\begin{aligned} & (2+\sqrt{2})(3+\sqrt{8})=6+2 \sqrt{8}+3 \sqrt{2}+\sqrt{2} \times \sqrt{8} \\ & =10+3 \sqrt{2}+2 \sqrt{8} \\ & 10+3 \sqrt{2}+2 \sqrt{8}=10+3 \sqrt{2}+2 \times 2 \times \sqrt{2}=10+7 \sqrt{2} \end{aligned}$ OR $\begin{aligned} & (2+\sqrt{2})(3+\sqrt{8})=(2+\sqrt{2})(3+2 \sqrt{2}) \\ & =6+4 \sqrt{2}+3 \sqrt{2}+\sqrt{2} \times 2 \sqrt{2} \\ & 6+7 \sqrt{2}+\sqrt{2} \times 2 \sqrt{2}=6+7 \sqrt{2}+2 \times 2 \end{aligned}$	$10+7 \sqrt{2}$	4	M1 3 or 4 out 4 terms correct $6,2 \sqrt{8}, 3 \sqrt{2}, \sqrt{2} \sqrt{8}$ - terms may be simplified and could be in a list M1 for 10 from $6+\sqrt{2} \sqrt{8}$ B1 $\sqrt{8}=\sqrt{4} \times \sqrt{2}$ oe or $\sqrt{8}=\sqrt{4 \times 2}$ A1 $10+7 \sqrt{2}$ cao OR B1 $\sqrt{8}=\sqrt{4} \times \sqrt{2}$ or $\sqrt{8}=\sqrt{4 \times 2}$ M1 3 or 4 out of 4 terms ft from the expansion of $(2+\sqrt{2})(3+2 \sqrt{2})$ 6, $2 \times 2 \sqrt{2}, 3 \sqrt{2}, 2 \times \sqrt{2} \sqrt{2}$ - terms may be simplified and could be in a list M1 for 10 from $6+2 \times \sqrt{2} \sqrt{2}$ A1 $10+7 \sqrt{2}$ cao

1380_3H					
Question		Working	Answer	Mark	Notes
23			b-a	1	B1 $\mathbf{b - a}$ or $-\mathbf{a + b}$
	(b)	$\begin{aligned} & \overrightarrow{B K}=2 \times \overrightarrow{A B}=2 \times(\mathbf{b}-\mathbf{a}) \\ & \overrightarrow{C K}=\overrightarrow{C B}+\overrightarrow{B K}=\mathbf{a}+2 \times(\mathbf{b}-\mathbf{a}) \end{aligned}$	2b-a	3	M1 for a correct vector statement for $\overrightarrow{C K}$ eg. $\overrightarrow{C K}=\overrightarrow{C A}+\overrightarrow{A K}$ or $\overrightarrow{C K}=\overrightarrow{C B}+\overrightarrow{B K}$
					M1 for $\overrightarrow{B K}=2 \overrightarrow{A B}$ or $\overrightarrow{B K}=2$ (' $\mathbf{b}-\mathrm{a}$ ') or $\overrightarrow{A K}=3 \overrightarrow{A B}$ or $\overrightarrow{A K}=3$ (' $\mathbf{b}-\mathbf{a}^{\prime}$) (may be seen as part of a vector equation BUT $2(\mathbf{b}-\mathbf{a})$ or ' $2(\mathbf{b}-\mathbf{a})$ ' or $3(\mathbf{b}-\mathbf{a})$ or ' $3(\mathbf{b}-\mathbf{a}$)' by itself does not score M1) A1 $2 \mathbf{b}-\mathbf{a}$ or $-\mathbf{a}+2 \mathbf{b}$

1380_3H					
Question		Working	Answer	Mark	Notes
24	(a)	$(a+1)^{2}=a^{2}+2 a+1 \neq a^{2}+1$ OR Pick any non-zero value of a and show that LHS \neq RHS	Correctly shown	2	M1 for $(a+1)^{2}=a^{2}+2 a+1$ or $\mathrm{a}^{2}+a+a+1$
					(Expansion must be correct but may not be
					simplified)
					A1 for statement that $a^{2}+2 a+1 \neq a^{2}+1 \quad$ (eg. they are different)
					OR
		$(a+1)^{2}=a^{2}+2 a+1$			M1 for correct substitution of any integer into
		Solves $a^{2}+2 a+1=a^{2}+1$ to get $a=0$ and			both expressions eg. $(2+1)^{2}$ and $2^{2}+1$
		indicates a contradiction			A1 for correct evaluation of both expressions and statement that they are not equal (eg. they are different)
					OR
					M1 $(a+1)^{2}=a^{2}+2 a+1$ or $\mathrm{a}^{2}+a+a+1$
					A1 Solves $a^{2}+2 a+1=a^{2}+1$ to get $a=0$ and indicates a contradiction
	(b)	$a^{2}+2 a+1+b^{2}+2 b+1=c^{2}+2 c+1$	AG	3	M1 use of Pythagoras in either triangle - one of
		But $a^{2}+b^{2}=c^{2}$			$\begin{aligned} & a^{2}+b^{2}=c^{2} \text { or }(a+1)^{2}+(b+1)^{2}=(c+1)^{2} \\ & \text { A1 } a^{2}+2 a+1+b^{2}+2 b+1=c^{2}+2 c+1 \text { and } \end{aligned}$
		So $2 a+2 b+1=2 c$			A1 $a^{2}+2 a+1+b^{2}+2 b+1-c^{2}+2 c+1$ and $a^{2}+b^{2}=c^{2}$
					A1 $2 a+2 b+1=2 c$
	(c)	LHS is odd, RHS is even	Explanation	1	B1 eg. LHS is odd, RHS is even or one side is odd and the other side is even oe

11.

13.

16.

