November 2011

1380_3	3H				
Qu	estion	Working	Answer	Mark	Notes
1	(a)	$\frac{4}{20} = \frac{2}{10}$	$\frac{1}{5}$	2	$M1 \frac{4}{20} \text{oe}$ $A1 \text{cao}$ $[SC: B1 \text{fo} \frac{16}{20} \text{ if } M0 \text{ scored }]$
	(b)	$\frac{\frac{6}{20} \times 100}{\text{or}}$ $\frac{\frac{6}{20} = \frac{5 \times 6}{5 \times 20}}$	30	2	$M1 \frac{6}{20} \times 100$ $A1 cao$ or $M1 \frac{6}{20} = \frac{5 \times 6}{5 \times 20}$ $A1 cao$
	(c)	10 - 1.50 = 8.50 8.50 ÷2 = 4.25 or $10 \div 2 = 5$ 1.50 ÷ 2 = 0.75	5.75	2	M1 $10 - 1.50 (= 8.50)$ and $(8.50) \div 2 (= 4.25)$ or $10 + 1.50 (=11.50)$ and $(11.50) \div 2$ or $10 \div 2$ and $1.50 \div 2$ or $2x \pm 1.5(0) = 10$ oe A1 cao
2	(a)	$4^2 + 6^2 = 2 \times 5^2 + 2$	4 th line	1	B1 cao
	(b)	$10^{2} + 12^{2} = 2 \times 11^{2} + 2 = 244$	10 th line	2	M1 for two of $10^2 + 12^2$, $2 \times 11^2 + 2$, 244 A1 for a fully correct line 10
	(c)	$2 \times 1000^{2} + 2 = 2 \times 1\ 000\ 000 + 2$	2 000 002 or 2 million and 2	2	M1 $2 \times 1000^{2} + 2$ A1 for 2 000 002 or 2 million and 2

1380 3	1380_3H						
Qu	estion	Working	Answer	Mark	Notes		
3		Exterior angle = $\frac{360}{6} = 60$ Interior angle = $180 - 60 = 120$ 120 + 90 = 210 360 - 210 = OR Sum of interior angles = $4 \times 180 = 720$ Interior angle = $720 \div 6 = 120$ 120 + 90 = 210 360 - 210 = OR Exterior angle = $\frac{360}{6} = 60$ Exterior angle = 90 90 + 60 =	3.1	4	M1 $\frac{360}{6}$ (= 60) M1 (Interior angle =) 180 - '60' M1 (dep on at least M1) 360 - ('120' + 90) A1 cao [SC: B2 answer of 210] OR M1 4 × 180 or 720 seen M1 '720' ÷ 6 M1 (dep on at least M1) 360 - ('120' + 90) A1 cao OR M1 $\frac{360}{6}$ (= 60) M1 (Exterior angle =) $\frac{360}{4}$ or 180 - 90 or 90 seen as exterior angle on diagram M1(dep on at least M1) '90' + '60' A1 cao		
4			3.1	2	M1 sight of 11th value or digits 31 A1 3.1		

1380 3	1380_3H							
Qu	estion	Working	Answer	Mark	Notes			
5	(a)	Vertices at (-4, 2), (-4, 0), (0, 0) and (-2, 2)	Correct translation	2	M1 for any translation A1 cao			
	(b)	Vertices at (4, 4), (2, 4) and (2, 8)	Correct reflection	2	M1 Line $y = x$ drawn or correct reflection in $y = -x$ A1 cao			
6		Distance = $25 + 45 + 30 = 100$ Travel time = $100 \div 50 = 2$ 9 am + 2h + 3h	2 pm	4	M1adding 2 or 3 distances with at least 2 correct)M1'100' \div 50 (= 2 hours)M19 + 3 + '100 \div 50' oeA1cao			
		OR $25 \div 50 + 45 \div 50 + 30 \div 50$ $= 30 \min + 54 \min + 36 \min$ $= 120 \min = 2 \text{ hours}$ 9 am + 2h + 3h			OR M1 for $\frac{25}{50}$ (= 30 min) or $\frac{45}{50}$ (= 54 min or $\frac{30}{50}$ (= 36 min) M1 for adding 2 or 3 times (from at least 2 correct distances) (= 2 hours) M1 9 + 3 + '30 + 54 + 36' oe A1 cao			

1380_3	BH				
Que	estion	Working	Answer	Mark	Notes
7	(a)	3(2t-4) = 2t+126t-12 = 2t+126t-2t = 12+124t = 24	6	3	B1 $6t-12$ or $\frac{2t}{3} + \frac{12}{3}$ M1 correctly isolating their terms in t or their constant terms in an equation A1 cao
	(b)	2(x - y) - 3(x - 2y) = 2x - 2y - 3x + 6y	-x+4y	2	M1 $2x - 2y$ or $3x - 6y$ or $-3x + 6y$ A1 $-x + 4y$ or $4y - x$ [SC: B1 for $-x - 8y$ or $x + 4y$ with or without working if M0 scored]
	(c)	$ (x-5)(x+7) = x^2 - 5x + 7x - 35 $	$x^2 + 2x - 35$	2	 M1 3 out of 4 terms correct with correct signs or all 4 terms correct ignoring any sign errors A1 cao
8		$\begin{array}{c} 0.5 \times 0.6 = 0.3 (0) \\ 0.3 \times 0.3 \end{array}$	0.09	2	B1 0.5 or 0.6 or 0.3 seen B1 cao

1380 3H				
Question	Working	Answer	Mark	Notes
9	$22.5\% - 17.5\% = 5\%$ $180 \times \frac{5}{100}$ OR $180 \times \frac{22\frac{1}{2}}{100} = 40.50$ $180 \times \frac{17\frac{1}{2}}{100} = 31.50$ $40.50 - 31.50$ OR $1.225 \times 180 = 220.5$ $1.175 \times 180 = 211.5$ $220.5 - 211.5$	9	3	M1 22.5 - 17.5 M1 180 × $(\frac{5}{100})$, oe A1 cao OR M1 180 × $\frac{22\frac{1}{2}}{100}$ oe or 180 × $\frac{17\frac{1}{2}}{100}$ oe M1 (dep) '40.50' - '31.50' A1 cao OR M1 1.225 × 180 or 1.175 × 180 M1 (dep) '220.5' - '211.5' A1 cao [SC: Award M2 A0 for an answer of 9 with 1 arithmetic error]
10	$CBE = 180 - 2 \times 48 = 180 - 96 = 84$ $DCB = 84$ OR $CBE = 180 - 2 \times 48 = 180 - 96 = 84$ $CBA = 180 - 84 = 96$ $ACB = 42$	42	3	 M1 correct method to find < <i>CBE</i> or 84 seen at <i>CBE</i> on the diagram M1 correct method to find an angle in triangle <i>ABC</i> or to find angle <i>DCB</i> (these angles may be seen on the diagram) A1 cao

1380 3	H				
Que	estion	Working	Answer	Mark	Notes
11	(a) (b)	Plot (15, 22) and (55, 15)	Points plotted Describe relationship	1	B1 cao $\pm \frac{1}{2}$ square B1 If the temperature increases so the time taken
	(0)			1	decreases oe (accept negative correlation)
	(c)		18-20	2	M1 draw LOBF between $(20,18)$ and $(20, 22)$ to $(70,3)$ and $(70,8)$ A1 $18-20$ (if M0 allow B2 for an answer in the range $18-20$)
	(d)		Reason	1	B1 reason e.g LOBF would give negative time, you should not use the LOBF beyond your data
12		9x + 12y = 6008x + 12y = 576x = 243 × 24 + 4y = 2006x + 8y = 4006x + 9y = 432y = 323x + 4 × 32 = 200	x = 24 y = 32	4	M1correct process to eliminate either x or y (allow one arithmetical error)A1either $x = 24$ or $y = 32$ M1 (dep on 1 st M1)correct substitution of their value of x or y into one of the equationsORM1 (indep of 1 st M1)correct process to eliminate the other variable (allow one arithmetical error)A1 cao for both $x = 24$ and $y = 32$
13	(a)	$\begin{array}{rcl} (6 \times 10^8) \times (4 \times 10^7) &=& 24 \times 10^{8+7} \\ 24 \times 10^{15} \end{array}$	2.4×10^{16}	2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(b)	$= \begin{array}{c} (6 \times 10^8) + (4 \times 10^7) \\ = 6 \times 10^8 + 0.4 \times 10^8 \end{array}$	6.4 × 10 ⁸	2	M1 $6 \times 10^{8} + 0.4 \times 10^{8}$ or $60 \times 10^{7} + 4 \times 10^{7}$ or $600\ 000\ 000 + 40\ 000\ 000$ or $640\ 000\ 000$ oe or 6.4×10^{n} A1 cao

1380_3	BH				
Qu	estion	Working	Answer	Mark	Notes
14	(a) (i)		- 0.6 to - 0.5 5.5 to 5.6	3	B1 for both, $accept - 0.6 \text{ to} - 0.5$ and 5.5 to 5.6
	(ii)		-1.4, 6.4		M1 draw $y = 6$ or one value correct A1 -1.4, 6.4 ± 0.2
	(b)	Draw $y = x - 4$	x = 0.2, y = -3.8 x = 5.8, y = 1.8	3	B1 draw $y = x - 4$ M1 use the points of intersection, can be implied by one value ft their line A1 $x = 0.2$, $y = -3.8$ and $x = 5.8$, $y = 1.8 \pm 1$ sq [SC: B2 for $x = 3 \pm \sqrt{8}$, $y = -3 \pm \sqrt{8}$ if B0 A0 scored]
15	(a)		$200 < C \le 400$	1	B1 cao
	(b)		7, 18, 27, 37, 45, 50	1	B1 cao
	(c)		correct cumulative frequency diagram	2	 B1 ft for all 6 points plotted correctly (± 1 sq) at top end of intervals dep on sensible table B1 ft (dep on previous B1) for points joined by curve/line segments
					[SC: B1 ft from sensible table for 6 points plotted not at ends but consistently within each interval and joined or 5 'points' correctly plotted at the top end of intervals]
	(d)	50 - 32	17 – 19	2	M1 Line drawn up to the cumulative frequency graph at 700 or correct reading at 700 $\pm \frac{1}{2}$ square or 31 – 33 seen A1 ft graph

1380	3H				
Qu	estion	Working	Answer	Mark	Notes
16		$\frac{1}{2}(12+8) \times 6 = 60$ $60' \times 20 = 1200$ $1200 \times 5 = 6000$ $6000 \div 1000 = 6$	6	5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
17	(a)	$-10 - 2 \times 3 \times (-5)^2 = -10 - 150$	-160	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(b)	$y = p - 2qx^{2}$ $2qx^{2} = p - y$ $x^{2} = \frac{p - y}{2q}$	$x = \pm \sqrt{\frac{p - y}{2q}}$	3	M1 at least one correct process from isolate $2qx^2$, divide by q, or by 2 or by $2q$ M1 (dep on M1) attempt to square root both sides of $x^2 = \frac{p-y}{2q}$, A1 $x = \pm \sqrt{\frac{p-y}{2q}}$ oe condone omission of \pm
18	(a)		1	1	B1 cao
	(b)		-2	1	B1 cao
	(c)	$9^{-3/2} = 1/9^{3/2} = 1/3^3$	$\frac{1}{27}$	2	M1 use of reciprocal eg $1/9^{3/2}$ or square root eg 3^{-3} , $\frac{1}{3^3}$ or $\sqrt{729}$ seen or 27 seen or -27 seen A1 cao

Question	Working	Answer	Mark	Notes
19	$ACB = 90^{\circ}$ angle in a semi circle $CBD = 180 - ACB$ co-interior anglesadd to 180° $CBD = 90^{\circ}$ $DCB = CDB = (180^{\circ} - 90^{\circ}) \div 2$ base angles of an isosceles triangles	45	4	 B1 ACB = 90 (could be on the diagram) or 45 seen in a correct position on the diagram B1 answer of 45 B1 angle in a <u>semicircle</u> = 90 B1 base angles <u>isosceles</u> triangle are equal or <u>alternate angles</u> are equal
20 (a)	$2x^2 - 9x + 4 = (2x - 1)(x - 4)$	(2x-1)(x-4)	2	M1 $(2x \pm 1)(x \pm 4)$ A1 cao
(b)	$(2x-1)(x-4) = (2x-1)^{2}$ 2x-1 = 0 or x-4 = 2x-1 for $x = \frac{1}{2} \text{or} x = -3$ OR $2x^{2} - 9x + 4 = 4x^{2} - 4x + 1$ $2x^{2} + 5x - 3 = 0$ (2x-1)(x+3) = 0 OR $(2x-1)(x-4) = (2x-1)^{2}$ (2x-1)[2x-1-(x-4)] = 0 (2x-1)(x+3) = 0	$x = \frac{1}{2}, -3$	4	M1 ' $(2x-1)(x-4)$ ' = $(2x-1)^2$ M1 dep for $2x-1=0$ or for $x-4=2x-1$ oe A1 for $x=\frac{1}{2}$ or $x=-3$ A1 cao OR M1 attempts to expand RHS (at least 3 terms with two correc M1 dep attempts to get $ax^2+bx+c=0$ (allow one error) or $2x^2+5x-3$ seen A1 $(2x-1)(x+3)$ seen or correct substitution into the quadratic formula A1 cao OR M1 ' $(2x-1)(x-4)$ ' = $(2x-1)^2$ M1 dep attempt to factorise $(2x-1)[2x-1-(x-4)]$ A1 ($2x-1$)($x+3$) seen A1 cao [SC: Answer of -3 or $\frac{1}{2}$, no working, scores B1]

1380 3	H				
Que	estion	Working	Answer	Mark	Notes
21		$6^{2} - (2\sqrt{3})^{2} = 36 - 12 = 24$ Area = $\frac{1}{2} \times 2\sqrt{3} \times \sqrt{24} = \sqrt{72}$ = $\sqrt{36 \times 2} = 6\sqrt{2}$	proof	5	M1 $6^2 - (2\sqrt{3})^2$ or $\sqrt{48}$ seen or $(2\sqrt{3})^2 + x^2 = 6^2$ oe A1 $\sqrt{24}$ oe M1(dep on M1) $\frac{1}{2} \times 2\sqrt{3} \times \sqrt{24}$, A1 $\sqrt{72}$ oe A1 $6\sqrt{2}$ or $(k) = 6$
22	(a) (b)	Probability tree diagram	$\frac{\frac{6}{10}}{\frac{4}{10}}, \frac{4}{10}$ $\frac{\frac{8}{11}}{\frac{3}{11}}, \frac{3}{\frac{7}{11}}, \frac{7}{11}, \frac{4}{11}$ 64	2	B1 $\frac{6}{10}$, $\frac{4}{10}$ oe on first two branches B1 $\frac{8}{11}$, $\frac{3}{11}$, $\frac{7}{11}$, $\frac{4}{11}$ on remaining branches
		$\frac{6}{10} \times \frac{8}{11} + \frac{4}{10} \times \frac{4}{11}$ $= \frac{48}{110} + \frac{16}{110}$ $= \frac{64}{110} = \frac{32}{55}$	<u>64</u> 110		$M3 \frac{6}{10} \times \frac{8}{11} + \frac{4}{10} \times \frac{4}{11} \text{oe} \\ (M2 \frac{6}{10} \times \frac{8}{11} \text{or} \frac{4}{10} \times \frac{4}{11} \text{oe} \\ \text{or} \frac{6}{10} \times \text{their} \frac{8}{11} + \frac{4}{10} \times \text{their} \frac{4}{11} \text{oe}) \\ (M1 \text{their} \frac{6}{10} \times \text{their} \frac{8}{11} \text{or} \text{their} \frac{4}{10} \times \text{their} \frac{4}{11} \text{oe} \\ \text{provided each component} < 1) \\ A1 \frac{64}{110} \text{oe} \end{cases}$