1380_3H					
Question		Working	Answer	Mark	Notes
Q		$\begin{aligned} & 15 \div 10 \\ & \\ & 80 \times 1.5 \\ & 60 \times 1.5 \\ & 30 \times 1.5 \\ & 36 \times 1.5 \end{aligned}$	120, 90, 45, 54	3	M2 for any one of $80+40$ or $60+30$ or $30+15$ or $36+18$ or 120 or 90 or 45 or 54 seen A1 cao OR M1 for $15 \div 10$ or $3 \div 2$ or sight of 1.5 M1 (dep) for 80×1.5 ' or $60 \times$ '1.5' or $30 \times$ '1.5' or 36×1.5 ' A1 cao OR M1 for $80 \div 10$ or $60 \div 10$ or $30 \div 10$ or $36 \div 10$ or 8 or 6 or 3 or 3.6 M1 (dep) for ' 8 ' $\times 15$ or ' 6 ' $\times 15$ or $3^{\prime} \times 15$ or ' 3.6 ' $\times 15$ A1 cao OR M1 for $80 \div 2$ or $60 \div 2$ or $30 \div 2$ or $36 \div 2$ or 40 or 30 or 15 or 18 M1 (dep) for ${ }^{\prime} 40^{\prime} \times 3$ or ${ }^{\prime} 30^{\prime} \times 3$ or ' 15 ' $\times 3$ or $18^{\prime} \times 3$ A1 cao
2	(a) (b)		Positive correlation 7.5	1 2	B1 for positive correlation or as the number of pages increases the time taken increases or the longer the book the more time it takes to read oe M1 for line of best fit drawn between $(50,2)$ and $(50,4)$ and $(200,9)$ and $(200,11)$ A1 for 6.5-8.5
3	(i) (ii)		55 Corresponding angles		B1 cao B1 for corresponding (angles), accept F angles

380					
Question		Working	Answer	Mark	Notes
4		$\frac{7 \times 20}{0.5}$	280	3	M1 for any two of 7, 20 and 0.5 seen or 140 or 40 or 14 M1 for 14×20 or $\frac{140}{0.5}$ or 7×40 or 7.2×40 or $144 \div 0.5$ or 140×2 A1 for $280-300$
5	(a)(i)	$\begin{aligned} & 5 \times(-2)^{2}+2 \\ & =5 \times 4+2 \end{aligned}$	22	1	B1 cao
	(ii)	$\begin{aligned} & 47-2=45 \\ & 45 \div 5=9 \end{aligned}$	3	2	M1 for $\frac{47-2}{5}$ or $\frac{47+2}{5}$ A1 for 3 or -3 (accept ± 3)
	(b)		-1, 0, 1, 2, 3	2	B2 cao (B1 for at least 4 correct and not more than one incorrect integer)
6		$360 \div 30$	12	2	$\begin{aligned} & \text { M1 for } 360 \div 30 \\ & \text { A1 cao } \end{aligned}$
7	(a)		Reflection	2	B2 for vertices of shape plotted at $(-3,2),(-3,3),(-5,3)$, $(-6,2.5),(-5,2)$ (B1 for a reflection in any vertical or horizontal line)
			Translation; $\binom{-6}{-1}$	2	B1 for translation B1 (indep.) for 6 left and 1 down $\mathrm{OR}\binom{-6}{-1}$ Note B0 if more than one transfomation given

80					
Question		Working	Answer	Mark	Notes
8	(a)		Question + response boxes	2	B1 for an appropriate question with a specific time frame e.g. each day B1 for at least 3 non-overlapping boxes. Do not accept inequalities N.B. Do not accept frequency tables or data collection sheets
	(b)		e.g. biased (sample)	1	B1 for a correct reason, e.g. biased (sample) or more likely to exercise more oe
9	(a) (b)		$\begin{gathered} 4,7 \\ 4 n-3 \end{gathered}$	2	B1 cao B2 cao (B1 for $4 n+a$ or $n=4 n-3$)
10		$\begin{aligned} & (7 \times 2+2 \times 5) \times 200=4800 \\ & 4800 \times 8 \end{aligned}$	38400 g	5	M1 for 7×2 or 2×5 or 7×7 or 5×5 or 2×2 M1 for " 7×2 " + " 2×5 " oe or " 7×7 " - " 5×5 " M1 (dep on $1^{\text {st }} \mathrm{M}$) for ' $24^{\prime} \times 200$ or $\mathbf{~} 0.0024^{\prime} \times 2$ M1 for ' 4800 ' $\times 8$ or ' $0.0048^{\prime} \times 8000000$ or ${ }^{\prime} 0.0048^{\prime} \times$ 8000 A1 for 38400 g or 38.4 kg SC B3 for any answer including digits 384

1380					
Question		Working	Answer	Mark	Notes
11		$\begin{aligned} & \text { P: T: } B=1: 3: 6 \\ & 54 \div 10 \times 6 \\ & \text { or } \\ & T=3 P \text { and } B=2 T \text { oe } \\ & S o, B=2 \times(3 P)=6 P \\ & P+T+B=P+3 P+6 P=10 P \\ & P=54 \div 10=£ 5.40 \\ & B=6 \times £ 5.40 \end{aligned}$	32.40	3	M1 for $1: 3: 6$ or any three numbers, in any order, in the ratio $1: 3: 6$ M1 for $54 \div(1+3+6) \times 6)$ A1 for 32.4(0) Or M1 for 1:3: 6 oe or $\mathrm{P}+3 \mathrm{P}+6 \mathrm{P}(=10 \mathrm{P})$ oe e.g $\mathrm{T} / 3+\mathrm{T}+2 \mathrm{~T}(=10 \mathrm{~T} / 3)$ or e.g B/6+B/2 + B $(=10 \mathrm{~B} / 6)$ or 5.4(0) or 16.2(0) seen M1 for $54 \div 10 \times 6$ or $\left[54 \div \frac{10}{3} "\right] \times 2$ or $54 \div$ " $\frac{10}{6}$ " oe A1 for 32.4(0) Alternative M1 for a partial decomposition of $£ 54$ in ratio $1: 3: 6$, e.g. $(\mathfrak{£}) 5+(£) 15+(£) 30(=(\mathfrak{f}) 50)$ M1 for a decomposition of the remaining amount, e.g. $40(\mathrm{p})+120(\mathrm{p})+240(\mathrm{p})(=400(\mathrm{p}))$ A1 for 32.4(0)

1380					
Question		Working	Answer	Mark	Notes
14			Construction	3	M1 for arcs construction of 60 degrees M1 (dep) for arcs bisector of '60 degrees' (not 90 degrees) A1 (dep on both M marks) for 30 degrees within guidelines OR M1 for arc construction of 90 degrees M1 (dep) for arc construction of 60 degrees A1 (dep on both M marks) for 30 degrees within guidelines
15	(a)		$x^{2}+2 x$	2	$\begin{aligned} & \text { M1 for } x \times x+x \times 2 \text { or two terms including } \\ & x \times x=\left(x^{2}\right) \text { or } x \times 2=(2 x) \\ & \text { A1 for } x^{2}+2 x \end{aligned}$
	(b)	$x^{2}+3 x-4 x-12$	$x^{2}-x-12$	2	M1 for all 4 terms correct ignoring signs or 3 out of 4 terms correct from $x^{2}, 3 x,-4 x,-12$ A1 for $x^{2}-x-12\left(\operatorname{accept} x^{2}-1 x-12\right)$
	(c)		$2 y(y-2)$	2	B2 cao (B1 for $y(2 y-4)$ or $2\left(y^{2}-2 y\right)$ or $\left.2 y(y-\ldots)\right)$ or $(2 y+0)(y-2) \text { or } 2 y(y+2)$
	(d)		$(x-3)(x+3)$	1	B1 oe

1380_3H										
Question		Working						Answer	Mark	Notes
16	(a)	$\frac{2}{3} \times \frac{6}{5}$						$\frac{4}{5}$	3	M1 for $\frac{2}{3} \times \frac{6}{5}$ M1 for $\frac{2 \times 6}{3 \times 5}$ or $12 / 15$ oe A1 cao
	(b)	$\begin{aligned} & (2-1) \\ & \text { or } \\ & \frac{35}{15} \\ & \text { Or } \end{aligned}$	$\begin{aligned} & +\frac{5}{15} \\ & \frac{21}{15} \end{aligned}$	$-\frac{6}{15}$				$\frac{14}{15}$	3	M1 for attempt to find a common denominator or sight of $\frac{5}{15}$ or $\frac{6}{15}$ or $\frac{35}{15}$ or $\frac{21}{15}$ oe or fully correct table A1 for sight of $\frac{5}{15}-\frac{6}{15}$ or $\frac{35}{15}-\frac{21}{15}$ oe 14
			1	3		7	3			A1 for $\frac{15}{15}$ oe
		2		6	7		21			
		5	5	15	5	35	15			Alternative M1 for $0.33(3 \ldots)$ or 0.4 OR $2.33(3 \ldots)$ or 1.4 A1 for $0.33(3 \ldots)-0.4$ OR 2.33(3...) - 1.4 A1 for 0.93 (recurring)
17		$\begin{aligned} & P B C \\ & B C P \end{aligned}$	90 90	$\begin{aligned} & P A C \\ & 90-1 \end{aligned}$				Proof	3	M1 for $P B C=90-P A C$ or $P A C=90-P B C$ or $A C P=90-P C B$ M1 for $B C P=90-(90-P A C)$ or $P A C=90-(90-B C P)$ oe A1 for $P A C=P C B$ and $P C A=P B C$ and $A P C=$ CPB B1 SC if M0 awarded for $A P C=B P C=90^{\circ}$ or statement matching the 3 equal sets of angles $P A C=P C B$ and $P C A=P B C$ and $A P C=C P B$

1380					
Question		Working	Answer	Mark	Notes
20			Two correct comparisons	2	B1 for Median for boys = median for girls oe OR boys highest score > girls highest score oe or boys lowest score $<$ girls lowest score oe or lower quartile for boys < lower quartile for girls oe or upper quartile for boys = upper quartile for girls B1 for IQR boys > IQR girls oe OR range boys $>$ range girls oe
21	(a)	e.g. $-\frac{2}{4}$	$-\frac{1}{2}$	2	M1 for attempt to find (difference in y) (difference in x) A1 for $-\frac{1}{2}$ oe SC B1 for $\frac{1}{2}$ or -2 seen with or without working or sight of $y=-1 / 2 x+2$ or $y=-1 / 2 x$ or $-1 / 2 x$
	(b)	$\begin{aligned} & 2=-1 / 2 \times 6+c \\ & 2+3=c \end{aligned}$ Alternative $\begin{aligned} & y-2="-1 / 2 "(x-6) \\ & y-2=-1 / 2 x+3 \end{aligned}$	$y=-\frac{1}{2} x+5$	2	M1 for $y=\prime^{\prime}-\frac{1}{2} ' x+c$ or $y=m x+5$ A1 cao SC B1 for $-1 / 2 x+5$

1380_3H					
Question		Working	Answer	Mark	Notes
22	(a)	$\begin{aligned} & 27^{\frac{1}{3}}=3 \\ & 3^{-2}=\frac{1}{3^{2}} \end{aligned}$	$\frac{1}{9}$	2	M1 for a correct cube root, reciprocal or square A1 for $\frac{1}{9}$ or $0.11(1 \ldots)$
	(b)	$\begin{aligned} & \frac{8-\sqrt{18}}{\sqrt{2}}=\frac{8}{\sqrt{2}}-\frac{\sqrt{18}}{\sqrt{2}} \\ & =\frac{8}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}-\sqrt{\frac{18}{2}} \\ & \frac{8 \sqrt{2}}{2}-3 \end{aligned}$	$\begin{gathered} a=-3 \\ b=4 \end{gathered}$	3	M1 for attempt to rationalise denominator, e.g. $\frac{8}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}-\frac{\sqrt{18}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \text { or } \frac{8-\sqrt{18}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ Or $8-\sqrt{ } 18=\sqrt{ } 2(a+b \sqrt{ } 2)$ oe A2 for $-3+4 \sqrt{ } 2$ (A1 for -3) (A1 for 4) SC B1 if M0 scored for -3 or 4 seen on either answer line
23		$\begin{aligned} & t(k-2)=k \\ & t k-2 t=k \\ & t k-k=2 t \\ & k(t-1)=2 t \end{aligned}$	$k=\frac{2 t}{t-1}$	4	M1 for attempt to multiply LHS by (k-2) or sight of $t(k-2)$ or $t k$ $-2 t$ or $t k-2$ (ignore RHS) M1 for attempt to subtract k from LHS or sight of $t k-k$ (ignore RHS) or attempt to subtract $t k$ to give $-2 t=k-t k$ (ignore LHS) M1 for attempt to factorise for k e.g. $k(t-1)$ or $k(1-t)$ A1 for $\frac{2 t}{t-1}$ or $\frac{-2 t}{1-t}$ oe
24	(a) (b)		84, 60	2 2	B1 for 84 B1 for 60 B1 for bar with width $160-180$ and height $2 \mathrm{~cm}(\pm 1 \mathrm{~mm})$ B1 for bar with width $180-210$ and height $6 \mathrm{~mm}(\pm 1 \mathrm{~mm})$

1380_3H					
Question		Working	Answer	Mark	Notes
25		$\begin{aligned} & \pi x l=2 \pi x^{2} \\ & h^{2}+x^{2}=4 x^{2} \\ & h^{2}=3 x^{2} \end{aligned}$ Alternative $\begin{aligned} & \pi x \sqrt{h^{2}+x^{2}}=2 \pi x^{2} \\ & \sqrt{h^{2}+x^{2}}=2 x \\ & h^{2}+x^{2}=4 x^{2} \\ & h^{2}=3 x^{2} \end{aligned}$	$\sqrt{3} x$	4	B1 for curved surface area of one of the shapes e.g. $\pi x l$ or $2 \pi x^{2}$ M1 for for attempt to equate surface areas e.g $\pi x l=2 \pi x^{2}$ or $l=2 x$ M1 for attempt to connect h and x using Pythagoras's theorem e.g. $h^{2}+x^{2}=4 x^{2}$ A1 for $\sqrt{3} x$ or $\sqrt{3 x^{2}}$ Alternative B1 for $h^{2}+x^{2}=l^{2}$ oe M1 for attempt to equate surface areas e.g. $\pi x \sqrt{h^{2}+x^{2}}=2 \pi x^{2} \mathrm{oe}$ M1 (dep) for attempt to square both sides of their formula e.g. $h^{2}+x^{2}=4 x^{2}$ A1 for $\sqrt{3} x$ or $\sqrt{3 x^{2}}$ SC B1 for attempt to equate surface areas in terms of r, rather than x
26	(a) (b)	$\begin{aligned} & A B=A O+O B \\ & O P=2 \mathbf{a}+\frac{2}{5}(3 \mathbf{b}-2 \mathbf{a}) \\ & =\frac{6}{5} \mathbf{a}+\frac{6}{5} \mathbf{b} \\ & =\frac{6}{5}(\mathbf{a}+\mathbf{b}) \end{aligned}$ parallel	$-2 \mathbf{a}+3 \mathbf{b}$ $\frac{6}{5}(\mathbf{a}+\mathbf{b})$ is parallel to $\mathbf{a}+\mathbf{b}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	B1 for $-2 \mathbf{a}+3 \mathbf{b}$ or $3 \mathbf{b}-2 \mathbf{a}$ M1 for $2 \mathbf{a} \pm \frac{2}{5}\left(3 \mathbf{b}-2 \mathbf{a}^{\prime}\right)$ OR $3 \mathbf{b} \pm \frac{3}{5}\left(2 \mathbf{a}-3 \mathbf{b}^{\prime}\right)$ A1 for $\frac{6}{5} \mathbf{a}+\frac{6}{5} \mathbf{b}$ oe A1 for $\frac{6}{5}(\mathbf{a}+\mathbf{b})$ is parallel to $\mathbf{a}+\mathbf{b}$ oe

1380 3H					
Question		Working	Answer	Mark	Notes
27		$\begin{aligned} & \frac{x \times 2(x+1)}{2}-\frac{2 \times 2(x+1)}{x+1}=1 \times 2(x+1) \\ & x(x+1)-4=2(x+1) \\ & x^{2}+x-4=2 x+2 \\ & x^{2}-x-6=0 \\ & (x-3)(x+2)=0 \end{aligned}$	$x=3,-2$	4	M1 for an attempt to multiply one term of the equation by 2 or $x+1$ or $2(x+1)$ or $2 \times x+1$ with or without cancelling or attempt to write LHS with a common denominator M1 for attempt to multiply all terms by $2(x+1)$ with or without cancelling $\text { e.g. } \frac{x \times 2(x+1)}{2}-\frac{2 \times 2(x+1)}{x+1}=1 \times 2(x+1)$ Or $x(x+1)-4=2(x+1)$ A1 for $x^{2}+x-4=2 x+2$ or $x^{2}-x-6=0$ A1 cao for 3 and -2

