November 2010

1380/4H				
Question	Working	Answer	Mark	Notes
1	$5 \times 8 \div 2$	20	2	M1 for $5 \times 8 \div 2$ oe A1 cao
2	$\begin{gathered} 1-0.58-0.3 \\ =\quad 1-0.88 \end{gathered}$	0.12	2	M1 for 1-0.58-0.3 oe A1 for 0.12 oe
3	$\begin{array}{ll} B=20 \times 2 & =40 \\ C=3 \div 4 \times 20 & =15 \\ D=10 \div 100 \times 20+20 & =22 \\ 20+40+15+22 & \end{array}$	97	4	M1 for 20×2 or 40 seen M1 for $3 \div 4 \times 20$ or 15 seen M1 for $10 \div 100 \times 20+20$ oe or 22 seen or 1.1×20 A1 cao
4 (b)	$\begin{align*} & 3 \times 100 \tag{a}\\ & 2 \div 1 / 2 \times 6 \end{align*}$	$\begin{aligned} & 300 \\ & 24 \end{aligned}$	2 2	M1 for 3×100 or $100 \div 6 \times 18$ oe A1 cao M1 for $2 \div 1 / 2 \times 6$ oe A1 cao

3					
Question		Working	Answer	Mark	Notes
5	(a)			2	B2 cao (B1 for shape in the correct orientation above the line $y=x$ or for shape elongated or shortened by one square but with either top or bottom in the correct position and in the correct orientation)
	(b)			3	B3 for correct enlargement in correct position (B2 for enlargement SF 3 in incorrect position or enlargement, centre O, but different scale factor) (B1 for 4 lines enlarged by SF 3 or enlargement, not from O, different scale factor)
6			$6 x+5 y$	2	B2 (B1 for either $6 x$ or $5 y$ seen)
	(b)	$\begin{aligned} & 2 x=10-3=7 \\ & x=7 \div 2 \end{aligned}$	3.5	2	M1 for $2 x=10-3$ or $2 x=7$ or (10-3) $\div 2$ A1 for 3.5 oe
	(c)(i)		c^{11}	2	B1 accept c^{5+6}
	(ii)		e^{8}		B1 accept e^{12-4}

1380/4H				
Question	Working	Answer	Mark	Notes
9		2.42927(0474)	2	B2 for 2.42927 or better (B1 for 19.56 or 8.0518 seen or 2.43 or 2.429 or 2.4292 or 2.4293 or digits 242927 ... or $\frac{97800}{40259}$ seen)
$10 \quad \text { (a) }$ (b)	$2 x<30$	$-2,-1,0,1,2$ $x<15$	2 2	B2 for $-2,-1,0,1,2$ (B1 for one extra or one missing) M1 for $2 x<30$ or $\frac{x}{3}<5$ or $x=15$ or $x>15$ A1 cao
11		A and 3 B and 2 C and 4 D and 1	2	B2 for all 4 correct (B1 for 2 correct)
12		$T=7 x+5 y$	3	B3 for $T=7 x+5 y$ oe (B2 for $7 x+5 y$ oe or $T=7 x+\ldots$ or $T=\ldots+5 y$) (B1 for $T=$ an expression in x and y or $7 x$ or $5 y$ seen)
13	$7120 \div 8$	890	2	$\begin{aligned} & \text { M1 for } 7120 \div 8 \text { or } 7120 \div 480 \\ & \text { A1 cao } \end{aligned}$

1380/4H				
Question	Working	Answer	Mark	Notes
18	$\begin{aligned} & 19.5 \times 1000 \div 210 \\ & =19500 \div 210=92.8(5714 \ldots) \\ & \text { or } 92 \times 210=19320=19.32 l \\ & 93 \times 210=19530=19.53 l \\ & \text { or } \\ & 19500 \div 92=211.95 \\ & 19500 \div 93=209.67 \end{aligned}$	Explanation	3	M1 for converting between ml and l correctly or for 0.21 or 19500 seen M1 for "19500" \div " 210 " or $92 \times$ " 210 " or $93 \times$ " 210 " or " 19500 " $\div 92$ A1 for a worded explanation with correct calculations
$19 \quad \text { (a) }$ (b)		$61,82,94,100$ Points plotted and joined	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao B2 ft (dep on sensible table - condone 1 addition error) for 5 points plotted correctly, ± 1 square, at ends of interval and joined by curve or line segments provided no gradient is negative - ignore any part of graph outside range of their points (B1 ft for 4 points plotted correctly and joined or for 5 points plotted correctly) (SC B1 if 5 points plotted not at end but consistent within each interval and joined)

1380/4H				
Question	Working	Answer	Mark	Notes
21	$\begin{aligned} A B=8 \cos 37^{\circ} & =8(0.7986 \ldots) \\ & =6.389 \ldots \end{aligned}$	6.39	3	M1 for $\cos 37=\frac{A B}{8}$ $M 1$ for $A B=8 \cos 37^{\circ}$ or 6.4 seen (dep on $1^{\text {st }}$ M1) A1 for 6.38-6.39 OR M1 for $\frac{A B}{\operatorname{Sin} 53}=\frac{8}{\operatorname{Sin} 90}$ M1 for $A B=\frac{8 \operatorname{Sin} 53}{\operatorname{Sin} 90} A B$ or 6.4 seen (dep on $1^{\text {st }} \mathrm{M} 1$) A1 for for 6.38-6.39 SC M2AO for 6.12 (radians) or 6.69 (grad)
$22 \quad(\mathrm{a})$ (b)		$-15,(-8),-7,-6,1$ (20)	2 2	B2 for all 4 correct (B1 for 2 or 3 correct) B2 for fully correct graph OR B1 ft for 6 'points' plotted correctly ± 1 square B1 for smooth curve through all their 5 or 6 plotted points provided B1 awarded in (a)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{1380/4H} \\
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline 26 \& \[
\begin{aligned}
\& \frac{7}{11} \times \frac{4}{10}+\frac{4}{11} \times \frac{7}{10} \\
\& =\frac{28}{55}+\frac{28}{55}
\end{aligned}
\] \& \(\frac{28}{55}\) \& 3 \& \begin{tabular}{l}
M1 for \(\frac{4}{10}\) and \(\frac{7}{10}\) as second probabilities, may be seen on a tree diagram, or for \(\frac{7}{11} \times \frac{4}{10}\) or \(\frac{4}{11} \times \frac{7}{10}\) \\
M1 (dep) for \(\frac{7}{11} \times \frac{\text { "4" }}{10}+\frac{4}{11} \times \frac{\text { "7" }}{10}\) \\
A1 for \(\frac{28}{55}\) oe \\
SC B2 for an answer of \(\frac{56}{121}\) oe
\end{tabular} \\
\hline \begin{tabular}{l}
\[
27
\] \\
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Graph translated 3 units to the right through points
\[
(1,6),(7,6),(2,0),(6,0),(4,-2.5)
\] \\
Graph reflected in the \(x\)-axis through points
\[
(-1,0),(3,0),(1,2.5),(-2,-6),(4,-6)
\]
\end{tabular} \& \begin{tabular}{l}
sketch \\
sketch
\end{tabular} \& 2

2 \& | M1 for a horizontal translation with at least three of the points $(-1,0),(3,0),(1,-2.5)$ translated by the same amount A1 for a curve through the points $(1,6),(7,6)$, $(2,0),(6,0),(4,-2.5) \pm 1 / 2$ square |
| :--- |
| M1 for a reflection in x-axis through $(-1,0),(3,0)$ or in y-axis through $(0,-2)$ |
| A1 for a curve through the points $(-1,0),(3,0),(1,2.5),(-2,-6),(4,-6) \pm 1 / 2$ square | \\

\hline
\end{tabular}

November 2010

1380/4H				
Question	Working	Answer	Mark	Notes
28 (a)	$\begin{aligned} \text { Area } & =1 / 2(8.3 \times 10.5) \sin 62^{\circ} \\ & =43.575 \times 0.88294 \ldots \\ & =38.47444136 \end{aligned}$	38.5	2	M1 for $1 / 2(8.3 \times 10.5) \sin 62^{\circ}$ A1 for 38.4-38.5 SC M1AO for ± 32.2 (radians) or 36.0 (grad)
(b)	$\begin{aligned} Q R^{2}= & 8.3^{2}+10.5^{2} \\ & -2(8.3)(10.5) \cos 62 \\ = & 68.89+110.25 \\ & -174.3 \times 0.46947 \ldots \\ = & 179.14-81.828 \ldots \\ Q R= & \sqrt{97.3111 \ldots} \\ = & 9.86463920 \end{aligned}$	9.86		M1 for correct substitution into cosine rule M1 (dep) for correct order of evaluation (excluding square root) A1 for 9.86-9.865 SC M2AO for 7.86 (radians) or 9.01 (grad)

