November 2010

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{1380/3H} \\
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline 1 \& \(24 \div 2\) \& 36 \& 2 \& M1 for \(24 \div 2\) or \(\frac{3}{2} \times 24\) oe or 12 A1 cao \\
\hline \begin{tabular}{l}
\[
2 \quad \text { (a) }
\] \\
(b)
\end{tabular} \& \& \begin{tabular}{l}
\[
p^{4}
\] \\
6cd
\end{tabular} \& \[
1
\]
\[
1
\] \& \begin{tabular}{l}
B1 cao \\
B1 for \(6 c d\)
\end{tabular} \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \& \begin{tabular}{l|l}
13 \& 15 \\
15 \& 17 \\
\hline
\end{tabular}
\[
(4,7),(6,5),(8,3)
\]
\[
\frac{3}{20} \text { oe }
\] \& 1
2

2 \& | B1 cao |
| :--- |
| B2 for all 3 pairs (numbers in any order in each pair, condone use of addition sign) and no extra pairs |
| (B1 for one or two or three correct pairs and no more than three extra pairs given, ignoring repeats) |
| B2 ft accept answer as fraction or decimal or percentage |
| (B1 for $\frac{x}{20}, x<20, x \neq 3$ or $\frac{3}{x}, x>3, x \neq 3$) |
| SC: If no marks scored award B1 for ' 3 out of 20^{\prime} as final answer or other use of incorrect notation |

\hline
\end{tabular}

1380/3H

Question	Working				Answer	Mark	Notes
7	$\begin{array}{r} 175 \\ \times 37 \\ \hline 1225 \\ 525 \underline{0} \\ 6475 \end{array}$				64.75	3	M1 for a complete method with relative place value correct, condone 1 multiplication error, addition not necessary M1 (dep) intent to add A1 cao
							or
		1.7	5				
	0 0	2	$1 / 3$				M1 for a completed grid with not more
		31	5				than 1 multiplication error, addition not
	0	4	$3 / 7$				necessary
		79	5				M1 (dep) intent to add
		7	5				A1 cao
							or
	100	70	5				
	3000	2100	150	30			M1 for sight of any complete partitioning method, condone 1 multiplication error, final addition not necessary M1 (dep) intent to add A1 cao NB: In all methods ignore placement of decimal point until final answer.
	700	490	35	7			
	$\begin{aligned} & 3000+2100+150+700+490 \\ & +35=6475 \end{aligned}$						

1380/3H				
Question	Working	Answer	Mark	Notes
8	$\begin{aligned} & (-2,6)(-1,5)(0,4)(1,3)(2,2) \\ & (3,1)(4,0),(5,-1) \end{aligned}$	Line drawn	3	(Table of values) M1 for at least 2 correct attempts to find points by substituting values of x M1 ft for plotting at least 2 of their points (any points plotted from their table must be correct) A1 for correct line between $x=-2$ and $x=5$ or (No table of values) M2 for at least 2 correct points (and no incorrect points) plotted or line segment of $x+y=4$ drawn (ignore any additional incorrect segments) (M1 for at least 3 correct points plotted with no more than 2 incorrect) A1 for correct line between $x=-2$ and $x=5$ or (Use of $y=m x+c$) M2 for at least 2 correct points (and no incorrect points) plotted (M1 for $y=4-x$ or line drawn with gradient of -1 or line drawn with a y intercept of 4 and a negative gradient) A1 for correct line between $x=-2$ and $x=5$

1380/3H				
Question	Working	Answer	Mark	Notes
11	$\begin{aligned} & 600+300+150 \\ & 6000+1050 \\ & 7050-3000 \\ & 4050 \div 10 \end{aligned}$	405	6	```M1 for \(600+300+150\) oe or \(6000 \times 0.175\) oe (NB must be VAT of 6000) M1 for 6000 + "1050" A1 for 7050 cao M1 for "7050" - 3000 M1 for dividing by 10 A1 for 405 cao```
12 (a) (b)		Correct description triangle with vertices $(6,1)(6,4)(5,4)$	3	B1 for rotation B1 for about $(0,0)$ B1 for 180° (accept half turn) NB: If more than one transformation seen then $B 0$ B1 cao
13	$\begin{aligned} & t-2=\frac{v}{5} \\ & \text { or } 5 t=v+10 \end{aligned}$	$v=5(t-2)$	2	M1 subtracting 2 from each side or multiplying each side by 5 A1 for $v=5(t-2)$ or $v=5 t-10$ (multiplication signs may be present) SC : If no marks scored, award B1 for $v=5 t-2$ oe or $v=t-10$ or $v=t-2 \times 5$ oe
14	$\frac{2+12}{2}, \frac{3+7}{2}$	7, 5	2	M1 for $\frac{2+12}{2}$ oe or $\frac{3+7}{2}$ oe (may be implied by one correct co-ordinate) A1 cao (SC : B1 for 5, 7)

1380/3H				
Question	Working	Answer	Mark	Notes
15		B and E	2	B2 for B and E (B1 for one correct)
(a) (b) (c) (d)	$3 x+15+10 x-12$	$\begin{gathered} 13 x+3 \\ x+2 \\ 5(x+2) \\ x y(x+y) \end{gathered}$	2 1 1 2	M1 for correct expansion of one bracket A1 cao B1 (accept $\frac{x+2}{1}$) B1 cao M1 for $x\left(x y+y^{2}\right)$ or $y\left(x^{2}+x y\right)$ or $x y$ as one of two factors with other factor incorrect but with two terms (eg. $x y\left(x^{2}+y^{2}\right)$) A1 cao
17		Correct construction	2	M1 for two pairs of correct intersecting arcs (may both be on the same side of $A B$) A1 for correct perpendicular bisector (SC. B1 for line within guidelines if no marks awarded)

Question	Working	Answer	Mark	Notes
18 (a)	$2 \frac{17}{20}-1 \frac{8}{20}$	$1 \frac{9}{20}$	3	M1 for dealing with the whole numbers M1 for finding a correct common denominator A1 for $1 \frac{9}{20}$ or $\frac{29}{20}$ oe or B1 for $\frac{57}{20}$ or $\frac{7}{5}$ oe M1 for finding a correct common denominator A1 for $1 \frac{9}{20}$ or $\frac{29}{20}$ oe or M1 for 2.85 M1 for 1.4 A1 for 1.45 oe
(b)	$\frac{8}{3} \times \frac{7}{4}=\frac{8 \times 7}{3 \times 4}=\frac{56}{12}$	$4 \frac{2}{3}$	3	B1 for $\frac{8}{3}$ oe or $\frac{7}{4}$ oe M1 for multiplying numerator and denominator of " $\frac{8}{3}$ " and " $\frac{7}{4}$ " A1 for $4 \frac{2}{3}$ oe mixed number or $\frac{14}{3}$ oe OR B1 for 2.67 or $2.66($ (..) and 1.75 M1 (dep B1) for correct method of multiplication A1 for $4 \frac{2}{3}$ oe

1380/3H					
Question		Working	Answer	Mark	Notes
19	(a)	$\begin{aligned} & 15 \div 10 \\ & 8 \times 1.5 \end{aligned}$	12	2	M1 for $15 \div 10$ or 1.5 or $\frac{3}{2}$ or $\frac{2}{3}$ A1 cao
	(b)	$1 / 2 \times(8+" \mathrm{a}$ " $) \times 5$	50	2	NB: ft from (a) provided ' $D C$ ' > 8
					M1 for $\frac{(8+" \text { a" }) \times 5}{2}$ A1 ft
					or
					M1 for $(8 \times 5)+1 / 2(" D C$ " -8$) \times 5$ A1 ft
					or
					M1 for $1 / 2 \times$ " $D C$ " $\times 15-1 / 2 \times 8 \times 10$ A1 ft
					or
					M1 for $1 / 2 \times 8 \times 10 \times 1.5^{2} "-1 / 2 \times 8 \times 10$ A1 ft

1380/3H				
Question	Working	Answer	Mark	Notes
20 (a)		13.2	1	B1 cao
(b)	13.8-12.6	1.2	2	M1 for $13.8-k$ or $k-13.8$ or $k-12.6$ or 12.6 - k where k can be any value A1 cao
(c)		Reason	1	B1 for correct reason e.g. because the IQR ignores extreme values.
21	```Equation (1) }\times3\mathrm{ then add equation (2) }\times2\mathrm{ leads to 26x = 13 3+2y=-3```	$\begin{aligned} & x=\frac{1}{2} \\ & y=-3 \end{aligned}$	4	M1 for coefficients of x or y the same followed by correct operation, condone one arithmetic error A1 for one correct answer M1 (dep) for substituting found value in one equation A1 cao for other correct answer (SC: B2 for one correct answer only if M's not awarded)
22 (a)		Reason	1	B1 for angle between a tangent and a radius is a right angle (or 90°)
(b)	$\begin{aligned} & 8^{2}+6^{2} \\ & \sqrt{100} \\ & 10-6 \end{aligned}$	4	3	M1 for $5\left(8^{2}+6^{2}\right)$ A1 for 10 A1 cao

1380/3H				
Question	Working	Answer	Mark	Notes
23 (a)	$x^{2}-3 x+5 x-15$	$x^{2}+2 x-15$	2	M1 for four correct terms with or without signs, or 3 out of no more than 4 terms with correct signs. The terms may be in an expression or in a table A1 cao
(b)	$(x+9)(x-1)=0$	$\begin{gathered} x=1 \text { or } \\ x=-9 \end{gathered}$	3	M2 for $(x+9)(x-1)$ (M1 for $(x \pm 9)(x \pm 1))$
	OR			A1 cao
	$a=1, b=8, c=-9$			
	$x=\frac{-8 \pm \sqrt{8-4 \times 1 \times-9}}{2 \times 1}$			M1 for correct substitution in formula of 1, $8, \pm 9$
	$=\frac{-8 \pm \sqrt{100}}{2}$			M1 for reduction to $\underline{-8 \pm \sqrt{100}}$
	OR			A1 cao
	$(x+4)^{2}-16-9$			or
	$(x+4)^{2}=25$			M1 for $(x+4)^{2}$
	$x=-4 \pm \sqrt{25}$			M1 for - $4 \pm \sqrt{25}$
				A1 cao
				SC: if no marks score then award B1 for 1 correct root, B3 for both correct roots.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{1380/3H} \\
\hline Question \& Working \& Answer \& Mark \& Notes \\
\hline 24 (a) \& \[
\frac{8}{5}=1.6
\] \& Bar of height 3cm drawn \& 2 \& \begin{tabular}{l}
M1 for \(2 \mathrm{~cm}^{2}=1\) pupil oe or calculation of \(\mathrm{fd}=\) 1.6 or bar of area \(12 \mathrm{~cm}^{2}\) but not correct shape \\
A1 cao
\end{tabular} \\
\hline (b) \& \(6+8+6+5\) \& 25 \& 2 \& \begin{tabular}{l}
B2 for 25 \\
(B1 for frequency of 5 for number of students who watched between 20 and 30 hours)
\end{tabular} \\
\hline 25 \& \(\frac{180}{1000} \times 50\) \& 9 \& 2 \& M1 for \(\frac{180}{{ }^{\prime} 1000^{\prime}} \times 50\) oe A1 cao \\
\hline \begin{tabular}{l}
\[
26
\] \\
(a) \\
(b)
\end{tabular} \& \[
P=\frac{k}{V}: 5=\frac{k}{8} ; k=40
\]
\[
P=\frac{40}{2}
\] \& \[
P=\frac{40}{V}
\] \& 3

1 \& | M1 for $P \propto \frac{1}{V}$ or $P=\frac{k}{V}, k$ algebraic M1 for subs $P=5$ and $V=8$ into $P=\frac{k}{V}$ A1 for $P=\frac{40}{V}$ |
| :--- |
| B1 ft on k for $P=\frac{' k '}{V}$ |

\hline
\end{tabular}

November 2010

1380/3H				
Question	Working	Answer	Mark	Notes
27 (a)	$\begin{aligned} & \overrightarrow{O P}=a+b \\ & \overrightarrow{O M}=\frac{1}{2} \overrightarrow{O P} \end{aligned}$	$\frac{1}{2}(a+b)$	2	M1 for $\overrightarrow{O P}=\overrightarrow{O T}+\overrightarrow{T P}$ or $\overrightarrow{O M}=\frac{1}{2} \overrightarrow{O P}$ or $\overrightarrow{O M}=\frac{1}{2} \overrightarrow{O T}+\frac{1}{2} \overrightarrow{T P}$ or $\overrightarrow{O P}=\mathbf{a}+\mathbf{b}$ A1 for $\frac{1}{2}(a+b)$ oe SC: B1 for $\mathrm{a}+\mathrm{b} \div 2$
(b)	$\begin{aligned} & \overrightarrow{T O}+O \vec{M} \\ & -\mathrm{a}+\frac{1}{2}(\mathrm{a}+\mathrm{b}) \end{aligned}$	$-\frac{1}{2} a+\frac{1}{2} b$	2	M1 for $-\mathbf{a}+$ " $\frac{1}{2}(\mathbf{a}+\mathbf{b}) "$ oe or $\overrightarrow{T M}=\overrightarrow{T O}+\overrightarrow{O M}$ or $\overrightarrow{T M}=\overrightarrow{T P}+\overrightarrow{P M}$ A1 ft
$\begin{equation*} 28 \tag{a} \end{equation*}$ (b)		Circle, centre 0 , radius 3 $\begin{gathered} x=2.6, y=-1.6 \text { or } \\ x=-1.6, y=2.6 \end{gathered}$	2 3	M1 for a complete circle centre $(0,0)$ A1 for a correct circle within guidelines $M 1$ for $x+y=1$ drawn M1 (dep) ft from (a) for attempt to find coordinates for any one point of intersection with a curve or circle A1 for $x=2.6, y=-1.6$ and $x=-1.6, y=2.6$ all ± 0.1

