June	2010
------	------

138	1380/3H							
Que	estion	Working	Answer	Mark	Notes			
1			8x + 6y	2	B2 for $8x + 6y$ or $6y + 8x$ or $2(4x + 3y)$ or $2(3y + 4x)$; accept x8 or y6 etc. [B1 for $8x$ or $6y$, accept x8 or y6]			
2			4 3 5 7 7 5 0 3 3 5 6 7 8 8 8 6 1 2 2 Key Eg. 4 3 means 43g	3	 B2 for a fully correct diagram. Accept a stem of 40, 50, 60 (the order of the numbers in the stem may be reversed) (B1 for ordered or unordered leaves, with just one error or omission) B1 for a correct key (units may be omitted) 			
3	(i)	180 - 110 = 70 180 - 2 × 70	40	4	M1 for $180-110$ or 70 seen M1 for $180-2\times"70"$ or 110 - "70" A1 cao			
	(ii)		Reasons		B1 for two out of three of: angles on a line add to 180°; isosceles triangle (accept 2 sides equal or 2 angles equal); sum of the angles in a triangle is equal to 180° OR for two out of three of: angles on a line add to 180°; isosceles triangle (accept 2 sides equal or 2 angles equal); exterior angle of a triangle is equal to the sum of the interior opposite angles			

Que	estion	Working	Answer	Mark	Notes
4	(a)		10 10	1	B1 for 10 10 or equivalent
	(b)		13-14	1	B1 for answer in range 13-14 inclusive
	(C)		Line from (11 10, 40) to (11 50, 0)	1	B1 for a line drawn from (11 10, 40) to (11 50, 0) Accept a tolerance of ± 2 mm
5			Triangle at (1,-2), (-1,-2), (1,-5)	2	B2 for triangle at $(1,-2)$, $(-1,-2)$, $(1,-5)$ (B1 for rotation of 180° about the wrong centre or for a rotation of 90°, centre (1,0) clockwise or anticlockwise)
6			Enlargement scale factor 2 centre (1,0)	3	B1 for enlargement B1 for scale factor 2 oe (eg 'x2',' by 2',' of 2') B1 for (1,0) [condone omission of brackets and/or the word 'centre'; do not accept a vector] Note: A combination of transformations gets NO marks

Questi	tion Working	Answer	Mark	Notes
7	$ \begin{array}{c} 40 \div (2+3) = 8 \\ 8 \times 2 \\ 8 \times 3 \end{array} $	16, 24	3	M1 for $40 \div (2+3)$ (= 8) oe or $\frac{2}{5}$ oe or $\frac{3}{5}$ oe or for listing at least 3 multiples of 2 and 3 M1 (dep) for "8"×2 or "8"×3 oe A1 for 16 and 24 in correct places [SC : B2 for 24, 16 if M0 scored] [SC: If M0 scored, B1 may be awarded for just one correct answer, in the correct place]
8 ((a)	15 - 19	1	B1 for 15 - 19 oe (eg 15 to 19)
	(b)	Freq polygon through (2, 8), (7, 11), (12, 9), (17, 14) and (22, 18)	2	 B2 for a complete and correct polygon (ignore any histograms, any lines below a mark of 2 or above a line of 22, but award B1 only if there is a line joining the first to last point) (B1 for one vertical or one horizontal plotting error OR for incorrect but consistent error in placing the midpoints horizontally (accept end points of intervals) OR for correct plotting of mid-interval values but not joined) Plotting tolerance ± ½ square Points to be joined by lines (ruled or hand-drawn but not curves)

Question	Working	Answer	Mark	Notes
9	$\frac{1}{2} \times 3 \times 4 \times 20$	120	2	M1 for ½ x 3 x 4 x 20 A1 cao
10	452 $\frac{36}{2712}$ $\frac{13560}{16272}$ $1 4 5 2 \\ 1 \frac{12}{2} \frac{5}{5} \frac{6}{5} 3 \\ 6 \frac{2}{2} \frac{4}{3} \frac{0}{2} \frac{1}{2} \frac{2}{2} 6 \\ \hline 1000 1500 60 \\ \hline 0 \frac{6}{2400} 300 12 \\ \hline 12000 + 1500 + 60 + 2400 + 300 + 12 = 16272 \\ \hline 12000 + 1200 + 120 \\ \hline 12000 + 1200 + 120 \\ \hline 1200 + 1200 \\ \hline 1200 + 1200 + 120 \\ \hline 1200 + 1200 \\ \hline 12$	162.72	3	 M1 for complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. OR M1 for a complete grid. Condone 1 multiplication error, addition not necessary. OR M1 for sight of a complete partitioning method, condone 1 multiplication error. Final addition not necessary. A2 for 162.72 (A1 (dep on M1) for correct placement of decimal point after final addition (of appropriate values) or for digits 16272 seen) (SC; B1 for attempting to add 36 lots of 4.52)

Question	Working	Answer	Mark	Notes
11	$300 \div 6 = 50$ $300 \div 10 \times 3 = 90$ 300 - 90 - 50	160	4	M1 for 300÷6 or 50 seen M1 for 300÷10×3 oe or 30+30+30 or 90 seen M1 (dep on at least 1 previous M1) for 300-"50"-"90"
	or $\frac{1}{6} + \frac{3}{10} = \frac{7}{15}$ $\frac{7}{15} \times 300 = 140$ $300 - 140$			A1 cao or M1 for $\frac{1}{6} + \frac{3}{10}$ or $\frac{7}{15}$ oe M1 for " $\frac{7}{15}$ " × 300 or 140 seen or 1- " $\frac{7}{15}$ " or $\frac{8}{15}$ oe seen M1 (dep on at least 1 previous M1) for 300-"140" or 160 seen or " $\frac{8}{15}$ "× 300 A1 cao

Que	estion	Working	Answer	Mark	Notes
12		360÷5	72	2	M1 for $360 \div 5$ or $180 - (3 \times 180 \div 5)$
		or $180 - (3 \times 180 \div 5)$			A1 cao
13			2 reasons	2	B2 for 2 out of 3 of these aspects Aspect1: no time frame, Aspect 2: overlapping, Aspect 3: not exhaustive (B1 for 1 aspect) [SC: B1 for designing a better question identifying at least one aspect]
14	(a)		3, -3, -1	2	B2 for all 3 correct (B1 for 1 or 2 correct)
	(b)		Graph	2	 B2 for a fully correct graph or B1 ft for "7 points" plotted correctly ± 2 mm B1 for a smooth curve drawn through their points provided B1 awarded in (a) Note: A straight line drawn from (-1, -3) to (0, -3) gets a maximum of B1
	(C)		-2.3 and 1.3	1	B1 for -2.3 and 1.3 or ft ± 2 mm on a graph with exactly 2 points of intersection with the x-axis.

Question	Working	Answer	Mark	Notes
15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2×2×3×3×5	3	M1 for attempt at continual prime factorization (at least two correct divisions); could be shown as a factor tree OR sight of at least one of each 2,3,5 as factors of 180 A1 for a fully correct factor tree or 2, 2, 3, 3, 5 which may include 1, but no other numbers A1 for $2 \times 2 \times 3 \times 3 \times 5$ or $2^2 \times 3^2 \times 5$ [Note $1 \times 2 \times 2 \times 3 \times 3 \times 5$ or $2,2,3,3,5$ or $2.2.3.3.5$ do not get the final A1]
16	$\frac{13}{4} \times \frac{8}{3}$	$\frac{26}{3}$	3	M1 for attempt to convert to improper fractions eg. $\frac{3 \times 4 + 1}{4} \text{ oe or } \frac{2 \times 3 + 2}{3} \text{ oe seen}$ M1 (dep) for $\frac{"13" \times "8"}{4 \times 3}$ or $\frac{104}{12}$ oe seen A1 for $\frac{26}{3}$ or $8\frac{2}{3}$ OR M1 for 3.25×2.66 or better M1 for a fully correct multiplication method A1 for 8.66 (recurring)

Que	estion	Working	Answer	Mark	Notes
17	(a)		3(x+4)	1	B1 for $3(x+4)$ Accept 3 × (x + 4), (x + 4)3 and (x + 4) × 3
	(b)	8x - 12 = 5x + 7 8x - 5x = 7 + 12 3x = 19	$\frac{19}{3}$ oe	3	M1 for $4 \times 2x - 4 \times 3$ or $8x - 12$ seen or for an intent to divide by 4 throughout eg. $\frac{5}{4}x + \frac{7}{4}$ oe seen M1 for a correct method to isolate terms in x and isolate number terms on opposite side of a 4-term equation eg. '8x' - 5x = 7 + '12' or 3x = 19 seen A1 for $\frac{19}{3}$ oe (accept 6.33 or better)
	(c)	$y^{2} + 5y + 4y + 20$ $\frac{y + 4}{y + y^{2} + 4y}$ $+5 5y 20$	$y^{2} + 9y + 20$	2	B2 cao (B1 for 4 correct terms with or without signs, or 3 out of no more than 4 terms, with correct signs. The terms may be in an expression or in a table)
	(d)		4x(2x+3y)	2	B2 cao [B1 for $4(2x^2 + 3xy)$ or $x(8x + 12y)$ or $2x(4x + 6y)$ or $2(4x^2 + 6xy)$ or $4x(a \text{ linear expression in } x \text{ and } y$, with just one error); for example $4x(kx + 3y)$ or $4x(2x + ky) k \neq 0$]

Que	estion	Working	Answer	Mark	Notes
18	(a)	$12 \times \frac{6}{4}$	18	2	M1 for sight of $\frac{6}{4}$ oe or $\frac{4}{6}$ oe or $\frac{12}{4}$ oe or $\frac{4}{12}$ oe or a ratio eg. 6:4 oe or decimal eg. 1.5 oe A1 cao
	(b)	$15 \times \frac{4}{6}$	10	2	M1 for $15 \times \frac{4}{6}$ oe or $\frac{15}{"18"} \times 12$ oe A1 cao
19		$4000 - \frac{10}{100} \times 4000 = 3600$ $3600 - \frac{10}{100} \times 3600$	3240	3	M1 for $4000 - \frac{10}{100} \times 4000$ or 0.9×4000 oe or 3600 or 400 or 3200 or 800 seen M1 (dep) " 3600 " $-\frac{10}{100} \times$ " 3600 " or " 3600 "× 0.9 oe A1 cao or M2 for 4000×0.9^2 (M1 for 4000×0.9^3) A1 cao [SC: B2 for an answer of £4840, with or without working]

Que	stion	Working	Answer	Mark	Notes
20	(a)		$a^2(c+b)$ 4abc	2	B1 for <i>a</i> ² (<i>c</i> + <i>b</i>) B1 for 4 <i>abc</i> [-1 for each additional incorrect answer, up to a minimum of 0]
	(b)	8 × 100 × 100 × 100	8 000 000 or 8 x 10 ⁶ or 8 million	2	M1 for sight of 10^{6} oe or $100 \times 100 \times 100$ or $200 \times 200 \times 200$ A1 for 8 000 000 or 8 x 10^{6}
21		6x + 4y = 16 6x + 15y = -6 -11y = 22 $6x + 4 \times -2 = 16$ Alternative method $x = \frac{8 - 2y}{3}$ $2\left(\frac{8 - 2y}{3}\right) + 5y = -2$ 16 - 4y + 15y = -6 11y = -22 $x = \frac{8 - 2 \times -2}{3}$	x = 4, y = -2	4	M1 for correct process to eliminate either x or y (condone one arithmetic error) A1 for either $x = 4$ or $y = -2$ M1 (dep on 1 st M1) for correct substitution of their found variable OR M1 (indep of 1 st M1 for a correct process to eliminate the other variable (condone one arithmetic error) A1 cao for both $x = 4$ and $y = -2$ [SC: B1 for $x = 4$ or $y = -2$ if M0 scored]

Qu	lestion	Working	Answer	Mark	Notes
22	(a)		20 < <i>n</i> ≤ 30	1	B1 for $20 < n \le 30$ Accept 20 to 30, 20 - 30 oe but not 26 Accept an indication of chosen interval on the diagram (circling) if no answer on the answer line
	(b)		16,42,65,75,80	1	B1 cao
	(c)		Points plotted and joined	2	B1 ft for at least 4 of "5 points" plotted correctly ±2 mm at end of interval dep on sensible table (condone 1 addition error) B1 ft (dep on previous B1) for points joined by curve or line segments provided no gradient is negative - ignore any part of graph outside range of their points (SC B1 if 4 or 5 pts plotted not at end but consistent within each interval and joined)
	(d)(i)		28 - 30	3	B1 for an answer in the range 28 - 30 or from "cf graph"
	(ii)		15 - 17		M1 for horizontal lines drawn at cf = 20 and cf = 60 oe and vertical lines drawn to 'x'-axis or 'correct' marks drawn on 'x'-axis only or for UQ = 36 - 38 and LQ = 20.5 - 23 or ft "cf graph" A1 For answer in the range of 15-17 or ft from "cf graph"

Que	estion	Working	Answer	Mark	Notes
23		Gradient = $\frac{102}{3 - 0}$	y = 4x - 2	3	M1 for gradient = $\frac{102}{3 - 0}$ oe or (y =) 4x + c or a right angle triangle with sides 12 and 3 shown M1 for $(y =) mx - 2$, $m \neq 0$ or $10 = 3m + c$ or $-2 = c$ (but not 'y-intercept = -2 ') A1 for $y = 4x - 2$ oe [the y must be included in the equation]
24	(i)		1	1	B1 cao
	(ii)		8	1	B1 for 8 or -8 or \pm 8
	(iii)		$\frac{4}{9}$	2	M1 for $\left(\frac{8}{27}\right)^{\frac{2}{3}}$ oe or $\left(\frac{3}{2}\right)^{-2}$ oe or $\left(\frac{2}{3}\right)^{2}$ oe or $\left(\frac{1}{\sqrt[3]{27/8}}\right)^{2}$ or better or $\frac{9}{4}$ oe seen A1 cao

Que	estion	Working	Answer	Mark	Notes
25	(a)	$x^{2} + (x+2)^{2} = (x+4)^{2}$ $x^{2} + x^{2} + 4x + 4 = x^{2} + 8x + 16$ $x^{2} + 4x - 8x + 4 - 16 = 0$	Proof	3	M1 for $x^2 + (x + 2)^2 = (x + 4)^2$ oe A1 for $x^2+x^2+4x+4 = x^2+8x+16$ A1 for completing the proof
	b)(i)	(x-6)(x+2) = 0 x-6 = 0 or x+2 = 0 or $x = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times -12}}{2 \times 1}$ $x = \frac{4 \pm \sqrt{64}}{2}$	6, -2	4	M1 for $(x \pm 6)(x \pm 2) (= 0)$ OR $\frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times -12}}{2 \times 1}$ allow ±4 for b and ±12 for c
	(ii)	$ \begin{array}{l} (x - 2)^2 - 16 = 0 \\ x - 2 = \pm \sqrt{16} \\ x = 2 \pm \sqrt{16} \end{array} $	10		OR $(x - 2)^2 - 16 = 0$ A1 x = 6 cao A1 x = -2 cao [SC: B1 for 1 correct solution if MO scored] B1 ft from (b)(i), provided x is a positive value [Note: an answer of 10 and 2 gets B0]

Question	Working	Answer	Mark	Notes
26	$\left(\frac{3}{10} \times \frac{2}{9}\right) + \left(\frac{2}{10} \times \frac{1}{9}\right) + \left(\frac{5}{10} \times \frac{4}{9}\right) = \frac{6+2+20}{90}$	$\frac{28}{90}$ oe	4	B1 for $\frac{2}{9}$ (orange) or $\frac{1}{9}$ (red) or $\frac{4}{9}$ (yellow) seen
				as 2 nd probability
				M1 for $\left(\frac{3}{10} \times \frac{2}{9}\right)$ or $\left(\frac{2}{10} \times \frac{1}{9}\right)$ or $\left(\frac{5}{10} \times \frac{4}{9}\right)$
				M1 for $\left(\frac{3}{10} \times \frac{2}{9}\right) + \left(\frac{2}{10} \times \frac{1}{9}\right) + \left(\frac{5}{10} \times \frac{4}{9}\right)$
				A1 for $\frac{28}{90}$ oe
				Alternative scheme for replacement
				M1 for $\left(\frac{3}{10} \times \frac{3}{10}\right)$ or $\left(\frac{2}{10} \times \frac{2}{10}\right)$ or $\left(\frac{5}{10} \times \frac{5}{10}\right)$
				M1 for $\left(\frac{3}{10} \times \frac{3}{10}\right) + \left(\frac{2}{10} \times \frac{2}{10}\right) + \left(\frac{5}{10} \times \frac{5}{10}\right)$
				No further marks may be awarded