June 2010

Question	Working	Answer	Mark	Notes
4 (a) (b)		$\begin{gathered} -6,-3,-2,1,7 \\ 0.06,0.3,0.35,0.56,0.63 \end{gathered}$	1	$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$
5		$\begin{gathered} (M, A)(M, S)(M, B)(J, A) \\ (J, S)(J, B)(W, A)(W, S) \\ (W, B) \end{gathered}$	2	B2 All correct combinations present and no incorrect combinations (B1 for 5 or more correct combinations present including the given one) Ignore repeated combinations
(b) (c) (d)			1 1 1 1	B1 for correct pattern drawn B1 ft from their diagrams B1 for 25 B1 for $2 \times 100+1$ or 201 or add on 99 lots of 2 (to 3) or start with 3 and add on 2, 99 times oe or continue adding 2 until you reach the 100 numbers or count on in pattern until 100 odd numbers or build pattern to $100^{\text {th }}$ pattern and then count sticks. Accept "times 2 and add 1 " oe, " $2 n+1$ " oe

Question		Working	Answer	Mark	Notes
7			7 or 21	1	B1 for 7 or 21 or both
	(ii)		10 or 20	1	B1 for 10 or 20 or both
	(iii)		4 or 16	1	B1 for 4 or 16 or both
	(iv)		7 or 21	1	B1 for 7 or 21 or both
8			$15 \mathrm{~cm}^{2}$	2	B1 for 15 B1 (indep) for cm^{2}
	(b)		16	1	B1 cao
9	(a)		1.55	1	B1 cao
	(b)		Cornflakes	1	B1 cao
	(c)		Rice Krispies	1	B1 cao
	(d)	$2.79+1.85+1.85$	6.49	2	M1 for $2.79+1.85+1.85$ or $279+185+185$ oe or 649 seen A1 for 6.49 SC: B1 for 4.64

Question	Working	Answer	Mark	Notes
10 (a) (b) (i) (ii)		$(2,3)$ Point plotted Point plotted	2	B1 cao B1 for $(1,2)$ plotted $(\pm 2 \mathrm{~mm})$ B1 for $(-3,-2)$ plotted $(\pm 2 m m)$
11 (i) (ii)		Square $\frac{5}{9}$	3	B1 for square or drawing of a square M1 for $\frac{n}{9}, n<9$ or $\frac{5}{m}, m>5$ A1 for $\frac{5}{9}$ (SC B1 for 5 in 9, 5 out of $9,5: 4$)
12 (a) (b) (c)		8	2	```B1 cao M1 for identification of 15 and 4 or -11 seen A1 cao B1 cao```

Question		Working	Answer	Mark	Notes
13	(a)		Science fiction	1	B1 cao
	(b)		0.13	1	B1 cao
	(c)		$\frac{6}{25}$	2	M1 for $\frac{24}{100}$ oe A1 for $\frac{6}{25}$
	(d)		450	2	M1 for $\frac{15}{100} \times 3000$ or $300+150$ oe or fully correct method to work out 15% of 3000 A1 for 450
14		Odd \times even $=$ answer	Working	2	M1 any example of odd number \times even number A1 odd \times even with a correct result that is even identified as final answer

Question	Working	Answer	Mark	Notes
16	$2 \times 5+12$ $\begin{aligned} & 22=4 w-2 \\ & w=(22+2) \div 4 \end{aligned}$	$4 p$ m^{3} 22 6	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	B1 for $4 p$ (accept $p 4,4 \times p, p \times 4$) B1 cao M1 for 2×5 or 10 seen A1 cao M1 for $22=4 w-2$ or for $22+2 \div 4$ oe A1 cao
17 (a) (b)		Kite 6 shapes tessellating	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao B2 for 6 kites tessellating (can include given kite - ignore extras) (B1 for 3, 4 or 5 kites tessellating (can include given kite - ignore extras))

Question	Working	Answer	Mark	Notes
$19 \quad(\mathrm{a})$ (b) (c)		$\begin{gathered} 1010 \\ 13-14 \\ 30 \end{gathered}$	1 1 1	B1 for 1010 B1 for answer in range 13-14 inclusive B1 for 30
$20 \quad(a)$ (b)	$\frac{3}{21}+\frac{2}{21}$ 1 7 2 X 14 21 21 147	$\begin{aligned} & \frac{2}{15} \\ & \frac{5}{21} \end{aligned}$	1 2	B1 for $\frac{2}{15}$ oe M1 for $\frac{1 \times 3}{7 \times 3}$ and intention to combine with 2/21 or correct method to get two fractions with the same denominator A1 for $\frac{5}{21}$ oe OR M1 for table A1 for $\frac{35}{147}$ oe

Question	Working	Answer	Mark	Notes
21		4 3 5 7 7 5 0 3 3 5 6 7 8 8 8 6 1 2 2 Key 4\|3 means 43g	3	B2 for fully correct diagram. Accept a stem of $40,50,60$. (The order of the numbers in the stem may be reversed) (B1 for ordered leaves or unordered leaves (with one error or omission)) B1 for a correct key (units may be omitted).
22		$\begin{gathered} \text { Triangle at } \\ (1,-2),(-1,-2),(1,-5) \end{gathered}$	2	B2 for triangle at $(1,-2),(-1,-2),(1,-5)$ (see overlay) (B1 for rotation of 180° about the wrong centre or for a rotation of 90° centre $(1,0)$ clockwise or anticlockwise)
23		Enlargement scale factor 2 centre $(1,0)$	3	B1 for enlargement B1 for scale factor 2 oe (eg $\times 2$, by 2 , of 2) B1 for $(1,0)$ (condone omission of brackets or the word "centre": do not accept a vector) Note: A combination of transformations gets 0 marks
24		2 reasons	2	B2 for 2 out of 3 of these aspects Aspect 1: no time frame Aspect 2: overlapping Aspect 3: not exhaustive (B1 for 1 aspect) (SC B1 for designing a better question identifying at least one aspect)

Question	Working	Answer	Mark	Notes
25	$\begin{aligned} & 40 \div(2+3)=8 \\ & 8 \times 2 \\ & 8 \times 3 \end{aligned}$	16, 24	3	M1 for $40 \div(2+3)$ oe or 8 or $\frac{2}{5}$ or $\frac{3}{5}$ seen or at least 3 multiples of 2 and 3 . M1 for " 8 " $\times 2$ or " 8 " $\times 3$ oe A1 for 16 and 24 in correct places SC : B2 for 24, 16 SC: If M0 scored, B1 for just one correct answer in the correct place.
26	$1 / 2 \times 3 \times 4 \times 20$	120	2	$M 1$ for $1 / 2 \times 3 \times 4 \times 20$ A1 cao

