November 2009

1380/4H					
Question		Working	Answer	Mark	Notes
6	(i) (ii)		45		B1 cao B1 (dep) for corresponding angles (accept F angles) or any other complete reason that includes properties of parallel lines e.g. alternate angles (accept Z angles) with 45 marked on diagram (or angles on a straight line $=180$) or allied angles with 135 marked on diagram
7		$\pi \times 5 \times 5$	78.5	2	$\begin{array}{lllll} \hline \text { M1 } & \text { for } & \pi \times 5 \times 5 & \text { (accept } \pi \text { as } 3.1 \text { or better) } \\ \text { A1 } & \text { for } & 77.5 \text { to } 78.6 & \text { or } & 25 \pi \end{array}$
8		$\begin{array}{ll} \hline 1.72 \div 2 & (=0.86) \\ 7.65 \div 9 & (=0.85) \end{array}$	Large box with reasons	3	M1 for $1.72 \div 2$ $(=0.86)$ M1 for $7.65 \div 9$ $(=0.85)$ A1 for large box or 9 kg with correct calculations OR M1 for $2 \div 1.72$ (= $1.162 \ldots$) M1 for $9 \div 7.65$ (= $1.176 \ldots$) A1 for large box or 9 kg with correct calculations OR M2 for $7.65 \times 2 \div 9(=1.70)$ or for $1.72 \div 2 \times 9(=7.74)$ A1 for large box or 9 kg with correct calculations OR M1 for $1.72 \times 9 \quad(=15.48)$ M1 for $7.65 \times 2 \quad(=15.30)$ A1 for large box or 9 kg with correct calculations NOTE: Accept equivalent methods for comparison

1380/4H					
Question		Working	Answer	Mark	Notes
9			$\begin{gathered} \text { Rotation } \\ 180^{\circ} \\ \text { Centre }(0,1) \end{gathered}$	3	B1 for rotation B1 for 180 (or half turn) B1 for $(0,1)$ OR B1 for enlargement B1 for scale factor - 1 B1 for $(0,1)$ (B0 for any combination of transformations)
10		$360+\frac{17.5}{100} \times 360$	423	3	M1 for $\frac{17.5}{100} \times 360$ oe or $10 \%+5 \%+2.5 \%$ oe (condone 1 calculation error) or 63 seen or 36,18 and 9 seen M1 (dep) for $360+{ }^{\prime} 63$ ' A1 for 423 OR M2 for 1.175×360 oe A1 for 423
11	(a) (b)		Negative $117-123$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao M1 for a line of best fit drawn between $(9,130) \&$ $(9,140)$ and between $(13,100) \&(13,110)$ inc.. A1 for 117-123 inclusive

1380/4H					
Question		Working	Answer	Mark	Notes
15			m^{7}	1	B1 for $m^{7}, \quad\left(\right.$ accept $\left.m^{3+4}\right)$
	(b)		p^{4}	1	B1 for $p^{4}, \quad\left(\operatorname{accept} p^{7-3}\right)$
	(c)		$12 x^{3} y^{5}$	2	B2 cao (B1 for two of $12, x^{3}, y^{5}$, ignore \times signs)
16	(a)	$\begin{aligned} & 14^{2}+12^{2} \\ &= 196+144=340 \\ & \sqrt{340}=18.4 \ldots \end{aligned}$	18.4	3	M1 for $14^{2}+12^{2}$ M1 (dep) for $\sqrt{14^{2}+12^{2}}$ A1 for 18.4 to 18.44
17	(a) (b)		9, -3, 3	2	B2 for all three correct (B1 one or two correct)
				2	B1 ft for all 7 'points' plotted correctly ± 1 square B1 ft (indep) for a smooth curve through6 or 7 of their plotted points provided at least B1 awarded in (a), with 6 or 7 points correctly plotted and $(1,-3) \&$ $(2,-3)$ not joined with a straight line
18	(a) (b)		$150 \leq h<160$	1	B1 for $150 \leq h<160$ (accept 150 to 160)
		$\begin{aligned} & (125 \times 8)+(135 \times 16)+ \\ & (145 \times 25)+(155 \times 30)+ \\ & (165 \times 21) \\ & =1000+2160+3625+ \\ & =4650+3465 \\ & =14900 \\ & 14900 \div 100 \end{aligned}$	149	4	M1 for $\mathrm{f} \times h$ for at least 3 consistent values of h in or at either end of intervals M1 (dep) for use of all correct mid-interval values (for $1^{\text {st }}$ interval accept 124.5 to 125) M1 (dep on $1^{\text {st }} \mathrm{M} 1$) for $\sum f h \div \sum f$ A1 cao

1380/4H					
Question		Working	Answer	Mark	Notes
19		$x^{2}-3 x+5 x-15$	$x^{2}+2 x-15$	2	B2 for $x^{2}+2 x-15$ (B1 for $x^{2}-3 x+5 x-15$ with at least 3 terms correct or 4 terms correct ignoring signs)
	(b)	$\begin{aligned} \frac{29-x}{4} & \times 4=x \times 4+5 \times 4 \\ 29-20 & =4 x+x \\ 5 x & =9 \end{aligned}$	1.8	3	M1 for multiplying through by 4 or $\frac{29}{4}-\frac{x}{4}=x+5$ M1 for correct rearrangement of their 4 terms to separate x and non- x terms A1 for 1.8 oe
20		$\begin{aligned} & 121+136+71+32=360 \\ & 360 \div 4=90 \end{aligned}$	90	2	M1 for $(121+136+71+32) \div 4$ or $360 \div 4$ A1 cao
	(b)		increasing	1	B1 for increasing (cost of gas) oe
21		$132.88 \div 88 \times 100$	151	3	M1 for recognising that 88% is equivalent to 132.88 M1 for $132.88 \div 88 \times 100$ oe A1 cao
22	(a)	$6 \times \frac{15}{10}$	9	2	M1 for sight of $\frac{15}{10}$ or $\frac{10}{15}$ or $\frac{10}{6}$ or $\frac{6}{10}$ oe seen A1 cao NB ratios get M0 unless of the form 1:n
	(b)	$12 \times \frac{10}{15} \text { oe }$	8	2	M1 for correct use of $\frac{15}{10}$ or $\frac{10}{15}$ or $\frac{15}{12}$ or $\frac{12}{15}$ or $\frac{\text { "9" }}{6}$ or $\frac{6}{" 9 "}$ oe A1 for 8 or ft from $12 \times 6 \div{ }^{\prime} 9$ '

1380/4H					
Question		Working	Answer	Mark	Notes
23		$\begin{aligned} & \cos x=\frac{8.2}{10.6}=0.77358 \ldots \\ & x=\cos ^{-1} \frac{8.2}{10.6}=39.323 \ldots \end{aligned}$	39.3	3	M1 for $\cos x=\frac{8.2}{10.6} \quad$ or $\quad \cos \frac{8.2}{10.6}$ M1 for $\cos ^{-1} \frac{8.2}{10.6}$ A1 for 39.3-39.33 SC: M2A0 for 0.686 or 43.69 or 39.2 or $39.37 \ldots$ or 39.4
24		$85 \div 382 \times 50$	11	2	M1 for $85 \div 382 \times 50$ oe or $11.1(\ldots)$ seen A1 cao
25	(a) (b)	$\begin{aligned} & y=k x \\ & 10=k \times 500 \end{aligned}$	$y=\frac{1}{50} x$	3	M2 for $10=k \times 500$ oe or $10=\frac{500}{k}$ oe (M1 for $y=k x$ or $y=\frac{x}{k}$ or $y \alpha x$) A1 for $y=\frac{1}{50} x$ oe $\quad($ eg $y=0.02 x)$ B1 ft from linear $y=k x$

1380/4H					
Question		Working	Answer	Mark	Notes
26	(a) (b)	$0.5 \times 5 \times 8 \times \sin 75$ $\begin{aligned} & A B^{2}=5^{2}+8^{2}-2 \times 5 \times 8 \times \cos 75 \\ & =25+64-80 \times \cos 75=68.29 \ldots \\ & A B=\sqrt{89-80 \times \cos 75} \\ & =8.264 \ldots \end{aligned}$	19.3 8.26	2	M1 for $0.5 \times 5 \times 8 \times \sin 75$ A1 for 19.3-19.32 SC M1A0 for 7.7(5..) or $-7.7(5 .$.$) or 18.4(7..) seen$ M1 for $A B^{2}=5^{2}+8^{2}-2 \times 5 \times 8 \times \cos 75$ M1 (dep) for 89 - ' 80 ' $\cos 75$ A1 for 8.26 (4...) SC M1M1A0 for 3.9(0..) or 7.6(4..) seen
27	(a) (b)		$\begin{gathered} 30 \\ 60 \\ \mathrm{fd}=1.5 \quad \text { (ht } 3 \mathrm{~cm}) \\ \mathrm{fd}=0.5 \quad \text { (ht } 1 \mathrm{~cm}) \end{gathered}$	2	B1 cao B1 cao M1 for at least one correct frequency density calculated for the last 2 bars (could be implied by one correct bar) or $1 \mathrm{sq}=5 \mathrm{cars}$ A1 cao
28		Upper bound $\sqrt{\frac{6.435}{5.5135}}=1.080340$ Lower bound $\sqrt{\frac{6.425}{5.5145}}=1.079402$	1.08 because the LB and UB agree to that number of figures	5	

1380/4H					
Question		Working	Answer	Mark	Notes
29		$\begin{aligned} & 4(2 x-1)+3(x+3) \\ & =(x+3)(2 x-1) \\ & \\ & =2 x-4+3 x+9 \\ & =2 x^{2}-x+6 x-3 \\ & 2 x^{2}-6 x-8=0 \\ & \\ & 2(x-4)(x+1)=0 \end{aligned}$	$x=-1,4$	5	M1 multiplying both sides by a common denominator of $(x+3)(2 x-1)$ oe or $\frac{4(2 x-1)+3(x+3)}{(x+3)(2 x-1)} \quad(=1) \quad$ or better seen or multiplying all 3 terms by $(x+3)$ or by $(2 x-1)$ M1 (indep) for $2 x^{2}-x+6 x-3$ oe seen or $\quad 8 x-4+3 x+9$ oe A1 for $2 x^{2}-6 x-8$ oe or $x^{2}-3 x-4(=0)$ M1 (dep on M2) for correct method to solve a 3 term quadratic A1 cao for both solutions

