

Paper Reference(s)

1380/3H

Edexcel GCSE

Examiner's use only

Team Leader's use only Mathematics (Linear) - 1380
Paper 3 (Non-Calculator) Higher Tier
Thursday 5 November 2009 - Morning
Time: 1 hour 45 minutes

Materials required for examination
Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser.
Tracing paper may be used.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature.
Check that you have the correct question paper.
Answer ALL the questions. Write your answers in the spaces provided in this question paper.
You must NOT write on the formulae page.
Anything you write on the formulae page will gain NO credit.
If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 25 questions in this question paper. The total mark for this paper is 100 .
There are 24 pages in this question paper. Any blank pages are indicated.
Calculators must not be used.

Advice to Candidates

Show all stages in any calculations.
Work steadily through the paper. Do not spend too long on one question.
If you cannot answer a question, leave it and attempt the next one.
Return at the end to those you have left out.

Formulae: Higher Tier
You must not write on this formulae page.
Anything you write on this formulae page will gain NO credit.

Volume of a prism $=$ area of cross section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

In any triangle ABC

Sine Rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Answer ALL TWENTY FIVE questions.

Write your answers in the spaces provided.
You must write down all stages in your working.
You must NOT use a calculator.

1. Using the information that

$$
74 \times 234=17316
$$

write down the value of
(a) 740×234
\qquad
(b) 74×2.34
\qquad
2. Work out an estimate for the value of $\frac{31 \times 4.92}{0.21}$
(b) On the grid, draw the graph of $y=2 x+2$

(2)
(c) Use your graph to find
(i) the value of y when $x=-1.5$

$$
y=
$$

\qquad
(ii) the value of x when $y=7$

$$
x=
$$

4.

Triangle \mathbf{P} has been drawn on a grid.
(a) On the grid, draw an enlargement of the triangle \mathbf{P} with scale factor 3

Triangle \mathbf{Q} has been drawn on a grid.
(b) On the grid, rotate triangle $\mathbf{Q} 90^{\circ}$ clockwise, centre O.
(3)
5. Here are the weights in grams, to the nearest gram, of 15 eggs.

33	46	41	54	51
38	60	44	55	51
62	55	52	37	63

(a) Complete the ordered stem and leaf diagram to show this information. You must include a key.

Key

Meg is going to pick at random one of the eggs.
(b) Work out the probability that this egg will have a weight of more than 45 grams.
6. 30 students took a test.

The table shows information about how long it took them to complete the test.

Time (t minutes)	Frequency
$0<t \leqslant 10$	5
$10<t \leqslant 20$	7
$20<t \leqslant 30$	8
$30<t \leqslant 40$	6
$40<t \leqslant 50$	4

(a) On the grid, draw a frequency polygon for this information.

(2)
(b) Write down the modal class interval.
\qquad
(1) Q6
(Total 3 marks)
7. (a) Work out $\frac{3}{8}+\frac{1}{4}$

Give your answer in its simplest form.
(b) Work out $\frac{2}{3} \times \frac{4}{5}$
(c) Work out 423×12

You must show all your working.
8. Simon wants to find out how much people spend using their mobile phone.

He uses this question on a questionnaire.

How much do you spend using your mobile phone?

£1-£5
£5-£10

£10-£15

(a) Write down two things that are wrong with this question.

1 \qquad
\qquad
2 \qquad
\qquad
(b) Design a better question for his questionnaire to find out how much people spend using their mobile phone.
You should include some response boxes.
9. (a) A solid cube has sides of length 5 cm .

Diagram NOT accurately drawn

Work out the total surface area of the cube.
State the units of your answer.
\qquad

The volume of the cube is $125 \mathrm{~cm}^{3}$.
(b) Change $125 \mathrm{~cm}^{3}$ into mm^{3}.
\qquad

The weight of the cube is 87 grams, correct to the nearest gram.
(c) (i) What is the minimum the weight could be?
(ii) What is the maximum the weight could be?
10. (a) Simplify $3 a+4 c-a+3 c$
(b) Expand $\quad y(2 y-3)$
(c) Factorise $x^{2}-4 x$
(d) Expand and simplify $2(x+3)+3(2 x-1)$
(e) Solve $\quad 3(x+2)=8$
\qquad
(2) Q10
11. The diagram shows the positions of two telephone masts, A and B, on a map.

(a) Measure the bearing of B from A.
\qquad

Another mast C is on a bearing of 160° from B.
On the map, C is 4 cm from B.
(b) Mark the position of C with a cross (\times) and label it C.
(2)
12. Batteries are sold in packets and boxes.

Each packet contains 4 batteries. Each box contains 20 batteries.

Bill buys p packets of batteries and b boxes of batteries. Bill buys a total of N batteries.

Write down a formula for N in terms of p and b.

13. (a) Write in standard form 213000
(b) Write in standard form 0.00123
14. (a) Write down the value of 5^{0}
(b) Write down the value of 2^{-1}
15. k is an integer such that $-1 \leqslant k<3$
(a) List all the possible values of k.
\qquad
(b) Solve the inequality $6 y \geqslant y+10$
16. Make q the subject of the formula $5(q+p)=4+8 p$ Give your answer in its simplest form.

$$
q=.
$$

17. The box plots show the distribution of marks in an English test and in a Maths test for a group of students.

(a) What is the highest mark in the English test?
\qquad
(b) Compare the distributions of the marks in the English test and marks in the Maths test.

1 \qquad
\qquad

2 \qquad
\qquad
18.

Diagram NOT accurately drawn
B, D and E are points on a circle centre O.
$A B C$ is a tangent to the circle.
$B E$ is a diameter of the circle.
Angle $D B E=35^{\circ}$.
(a) Find the size of angle $A B D$.

Give a reason for your answer.
(b) Find the size of angle $D E B$.

Give a reason for your answer.
19. Emma has 7 pens in a box.

5 of the pens are blue.
2 of the pens are red.
Emma takes at random a pen from the box and writes down its colour.
Emma puts the pen back in the box.
Then Emma takes at random a second pen from the box, and writes down its colour.
(a) Complete the probability tree diagram.

First pen Second pen

(b) Work out the probability that Emma takes exactly one pen of each colour from the box.
20. Solve the simultaneous equations

$$
\begin{aligned}
& 4 x+y=-1 \\
& 4 x-3 y=7
\end{aligned}
$$

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

21. Work out $(2+\sqrt{ } 3)(2-\sqrt{ } 3)$

Give your answer in its simplest form.
22.
$O A B$ is a triangle.
$\overrightarrow{O A}=\mathbf{a}, \quad \overrightarrow{O B}=\mathbf{b}$
$\overrightarrow{A B}=$ \qquad
P is the point on $A B$ so that $A P: P B=2: 1$
(b) Find the vector $\overrightarrow{O P}$ in terms of \mathbf{a} and \mathbf{b}. Give your answer in its simplest form.

Diagram NOT accurately drawn
(a) Find the vector $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.
23. Prove that the recurring decimal $0 . \ddot{3} \dot{6}=\frac{4}{11}$
24. This is a sketch of the curve with the equation $y=\mathrm{f}(x)$. The only minimum point of the curve is at $P(3,-4)$.

(a) Write down the coordinates of the minimum point of the curve with the equation $y=\mathrm{f}(x-2)$
(b) Write down the coordinates of the minimum point of the curve with the equation $y=\mathrm{f}(x+5)+6$
25. Prove, using algebra, that the sum of two consecutive whole numbers is always an odd number.

