November 2009

380					
Question		Working	Answer	Mark	Notes
1	(a) (b)		$\begin{aligned} & 173160 \\ & 173.16 \end{aligned}$		$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$
2		$\frac{30 \times 5}{0.2}=150 \div 0.2=750$	750-775	3	M1 For correct roundings to 1 sig fig of two or three of the figures or consistent multiples e.g 150 , or 155 or two of $30,5,0.2$ or $\frac{31 \times 500}{20}$ or $\frac{30 \times 500}{20}$ or $\frac{30 \times 500}{21}$ Or A1 for any correct approximate expression which would give the answer after one operation e.g $\frac{150}{0.2}$ or $\frac{155}{0.2}$ or 150×5 or 30×25 or 31×25 or 155×5 or $\frac{1500}{2}$ A1 750-775 Do not accept attempts at full working out

1380/3H					
Question		Working	Answer	Mark	Notes
Q	(a)		-2,(0,2),4,6,8	2	B2 for all 4 correct values of y (B1 for 2 or 3 correct values of y)
	(b)		Line	2	B2 for correct straight line between $x=-2$ and $x=3$ (B1 for a line which passes through $(0,2)$, or a line with gradient 2, or at least 4 points from their table plotted correctly)
	(c) (i)		-1	1	B1 for $y=-1$, or $\mathrm{ft} x=-1.5$ from any portion of a straight line segment.
	(ii)		2.5	1	B1 for $x=2.5$, or $\mathrm{ft} y=7$ from any portion of a straight line segment.
4	(a)		Enlarged P	2	B2 any correct enlargement (B1 at least one side drawn to a sf of 3) tol $\frac{1}{2}$ sq (B1 correct enlargement by $\mathrm{SF} \neq 3$)
	(b)	Triangle at (2,-1), (3,-1),(2,-3)	Rotated Q	3	B3 fully correct (B2 correct orientation in correct quadrant or 90° anticlockwise about O) (B1 any rotation about O OR correct orientation in incorrect quadrant).
					SC B1 If Q is plotted correctly in all 4 quadrants then award

Question		Working	Answer	Mark	Notes
5	(a)		$\begin{array}{l\|lll} 3 \mid & 378 \\ 4 \mid 1146 \\ 5 \mid 1112455 \\ 6 \mid 023 \end{array}$	3	M1 for unordered diagram (condone one error, eg an omitted value or an incorrect value or a duplicated value or a misplaced value) A1 cao B1 for key (eg $4\|6=46,30\| 6=36$)
	(b)		$\frac{10}{15}$	2	M1 numerator of 10 ft table or for denominator of 15 A1 $\frac{10}{15}$ oe
6	(a)		Polygon	2	B2 Fully correct polygon. Points plotted at the midpoint $\pm 2 \mathrm{~mm}$ (B1 All points plotted accurately not joined, or one error in plotting but joined) or all points plotted accurately with first joined to last, or all points at the correct heights and consistently within or at the ends of the intervals and joined (Includes joining last to first to make a polygon)). NB: ignore polygon before $1^{\text {st }}$ point, and after last point. Ignore any histograms.
	(b)		$20<t \leq 30$	1	B1 $20<t \leq 30$ or ft from graph..Accept any unambiguous description of the correct interval e.g $20-30$

1380/3H					
Question		Working	Answer	Mark	Notes
8	(a)		Reasons	2	$1^{\text {st }}$ aspect: time frame $2^{\text {nd }}$ aspect: overlapping boxes (eg.'the 5 is in two places' 'the amounts overlap') $3^{\text {rd }}$ aspect: not exhaustive (eg no $<£ 1$, other) Award B2 for 2 aspects, B1 for 1 aspect
	(b)		$\begin{gathered} \text { Any } 2 \text { of } 1^{\text {st }} \\ 2^{\text {nd }} \text { and } 3^{\text {rd }} \\ \text { aspects } \end{gathered}$	2	$1^{\text {st }}$ aspect: one question or responses which includes a time frame $2^{\text {nd }}$ aspect: at least 3 non-overlapping response boxes; need not be inclusive of all.
					3rd aspect ; Allow for inclusion of (£)0 or use of phrase 'bigger than' oe with at least 3 response boxes Award B2 for two aspects, B1 for one aspect NB response boxes must be intervals but allow 0 on its own for the $3^{\text {rd }}$ aspect

1380/3H					
Question		Working	Answer	Mark	Notes
9	(a)	$(5 \times 5) \times 6$	150 $\mathrm{~cm}^{2}$	4	M1 for attempt to find the area of one face (eg 5×5 or 25) M1 for 6 faces with an intention to add A1 cao B1 (indep) for cm^{2} (with or without numerical answer) NB Do not accept any calculation which should lead to 125
	(b)	$\begin{aligned} & 125 \times 10 \times 10 \times 10 \text { or } \\ & 50 \times 50 \times 50 \end{aligned}$	125000	2	M1 $125 \times 10^{3}(\mathrm{oe})$ or 50^{3} (oe) A1 cao
	(c) (i)		86.5	1	B1 cao for 86.5
	(ii)		87.5	1	B1 for 87.5 , or 87.49 or $87.499 \ldots$ (min with dots) or 87.49 with some indication of recurrence

1380/3H					
Question		Working	Answer	Mark	Notes
10	(a)		$2 a+7 c$	2	B2 for $2 a+7 c$ (B1 for $2 a$ or $7 c$)
	(b)		$2 y^{2}-3 y$	1	B1 $2 y^{2}-3 y$ or $2 x y^{2}-3 x y$
	(c)		$x(x-4)$	2	B2 $x(x-4)$ or $(x+0)(x-4)$ condone omission of final bracket (B1 x (linear in x) condone omission of final bracket) (B1 for $x-4$)
	(d)	$2 x+6$ or $6 x-3$	$8 x+3$	2	B2 $8 x+3$ (B1 for $2 x+6$ or $6 x-3$)
	(e)		$\frac{2}{3}$	2	M1 for expansion of brackets or division by 3 A1 $\frac{2}{3}$ oe
11	(a)		060°	1	B1 (0) $57^{\circ}-(0) 62^{\circ}$
	(b)		Cross C	2	B1 cross $4 \mathrm{~cm}(\pm 0.2 \mathrm{~cm})$ from B B1 cross $160^{\circ}\left(\pm 2^{\circ}\right)$ from B [SC: B1 cross 4 cm and 160° from A)

1380/3H					
Question		Working	Answer	Mark	Notes
12			$N=4 p+20 b$	3	B3 for $N=4 p+20 b$ oe (B2 $4 p+20 b$ as an expression not in a formula Or $N=k+20 b$ oe or $N=4 p+k$ oe $k \neq 0$) (B1 for $N=c p+d b, c$ and d numerical and not both zero Or $k+20 b$ oe or $4 p+k$ oe any $k \neq 0$) SC B2 for $N=4 p+20 b$ subsequently incorrectly simplified SC B2 for $k N=4 p+20 b \quad(k \neq 1)$ SC B1 for $4 p+20 b$ subsequently incorrectly simplified SC B1 for $N=4 p$ (space) $20 b$ or $N=4 p \times 20 b$
13	(a) (b)		$\begin{aligned} & 2.13 \times 10^{5} \\ & 1.23 \times 10^{-3} \end{aligned}$	1	B1 cao B1 cao (SC If both numbers are written correctly to 2 Sig fig then award $\mathrm{B} 0, \mathrm{~B} 1$)
14	(a) (b)		$\begin{aligned} & 1 \\ & \frac{1}{2} \end{aligned}$		B1 cao B1 oe Accept 0.5
15	(a) (b)	$5 y \geq 10$	$-1,0,1,2$ $\begin{gathered} 5 \\ y \geq 2 \end{gathered}$	2	B2 cao (-1 each error or omission) M1 for $5 y \geq 10$, condone use of $=$ sign or $>$ A1 for $y \geq 2$ oe as final answer [SC: B1 for 2 or $\frac{10}{5}$ seen if M 0 as an answer]

1380/3H					
Question		Working	Answer	Mark	Notes
16		$\begin{aligned} & 5 q+5 p=4+8 p \\ & 5 q=4+8 p-5 p \\ & 5 q=4+3 p \\ & q=\frac{4+3 p}{5} \end{aligned}$	$q=\frac{4+3 p}{5}$	3	M1 for expansion of bracket or $5 q+5 p$ or each term $\div 5$ M1 for correct process to $a q=b p+c, a, b$ and c numbers A1 $q=\frac{4+3 p}{5}$ oe [SC B2 for ambiguous answer eg $4+3 p / 5$]
17	(a)		50	1	B1 cao
	(b) (i)		Explanation	1	B1 Comparison of medians, or quartiles or spot points eg highest, lowest, median, etc. Allow 'average' for median
	(ii)		Explanation	1	B1 Comparison of IQR, or range. Allow 'dispersion or spread' Comparison of skewness NB: (b) could be ft from (a)
18			$\begin{gathered} 55^{\circ} \\ \text { Reason } \end{gathered}$	2	B1 cao B1 Angle between tangent \& radius, diameter (is 90°) OR alternate segment theorem
	(b)		$\begin{aligned} & 55^{\circ} \\ & \text { Reason } \end{aligned}$	2	B1 cao or ft (a) providing the answer is $<90^{\circ}$ B1 Angle in a semicircle or angle subtended by a diameter (is 90°) OR alternate segment theorem

1380/3H					
Question		Working	Answer	Mark	Notes
19	(a)	$\frac{5}{7}, \frac{2}{7} ; \frac{5}{7}, \frac{2}{7} \frac{5}{7}, \frac{2}{7}$		2	B1 for $\frac{5}{7}, \frac{2}{7}$ on LH branch B1 for $\frac{5}{7}, \frac{2}{7} \frac{5}{7}, \frac{2}{7}$ on RH branch
	(b)	$\begin{aligned} & \frac{5}{7} \times \frac{2}{7}+\frac{5}{7} \times \frac{2}{7} \\ & =\frac{10}{49}+\frac{10}{49}=\frac{20}{49} \end{aligned}$	$\frac{20}{49}$	3	M1 for " $\frac{5}{7} \times \frac{2}{7}$ " alone M1 for addition of two products from correct braches eg " $\frac{5}{7} \times \frac{2}{7}+\frac{5}{7} \times \frac{2}{7}$ " A1 $\frac{20}{49}$ oe Alternative: M2 for an attempt to evaluate $1-\frac{5}{7} \times \frac{5}{7}-\frac{2}{7} \times \frac{2}{7}$ A1 cao SC $\frac{5}{7} \times \frac{2}{6}+\frac{2}{7} \times \frac{5}{6}=\frac{20}{42}$ gets B2
20		$\begin{array}{rr} 4 x+y=-1 & 12 x+3 y=-3 \\ \frac{4 x-3 y=7}{4 y=-8} & \frac{4 x-3 y=7}{16 x=4} \\ y=-2 & x=1 / 4 \end{array}$	$\begin{aligned} & x=\frac{1}{4} \\ & y=-2 \end{aligned}$	3	M1 for correct process to eliminate either x or y (condone one arithmetic error) M1 (dep on previous M1) for substituting found value into an appropriate equation, or further elimination A1 cao

1380/3H					
Question		Working	Answer	Mark	Notes
21		$\begin{aligned} & (2+\sqrt{3})(2-\sqrt{3}) \\ & =4-2 \sqrt{3}+2 \sqrt{3}-\sqrt{3} \sqrt{ } 3 \\ & =4-3 \end{aligned}$	1	2	M1 for all 4 terms correct ignoring signs or 3 out of 4 terms with correct signs.or correct use of difference of 2 squares A1 cao (SC M1 for $4-2 \sqrt{ } 3+2 \sqrt{ } 3$)
22	(a)		b-a	1	B1 cao
	(b)	$\begin{aligned} O P=O A & +A P \\ = & O A+\frac{2}{3} A B=\underline{\mathbf{a}}+\frac{2}{3}(\underline{\mathbf{b}}-\underline{\mathbf{a}}) \end{aligned}$	$\frac{1}{3} \mathbf{a}+\frac{2}{3} \mathbf{b}$	3	M 1 for $\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}$ or $\overrightarrow{O P}=\overrightarrow{O B}+\overrightarrow{B P}$ M1 for $\overrightarrow{A P}=k(\mathbf{b}-\mathbf{a}) \mathrm{ft}$ from (a) with $0<k<1$ or $\overrightarrow{A P}=\frac{2}{3} \overrightarrow{A B}$ or $\overrightarrow{B P}=k(\mathbf{a}-\mathbf{b}) \mathrm{ft}$ from (a) with $0<k<1$ or $\overrightarrow{B P}=\frac{1}{3} \overrightarrow{B A}$ A1 for $\frac{1}{3} \mathbf{a}+\frac{2}{3} \mathbf{b}$ oe (must be in its simplest form)

1380/3H					
Question		Working	Answer	Mark	Notes
23		$\begin{aligned} & x=0.363636 \ldots \\ & 100 x=36.363636 \ldots \\ & 99 x=36 \\ & x=\frac{36}{99}=\frac{4}{11} \\ & \text { or } \\ & 10000 x=3636.36 \ldots \\ & 9999 x=3636 \\ & x=\frac{3636}{9999}=\frac{4}{11} \\ & \text { or } \\ & 9900 x=3600 \text { etc } \end{aligned}$	Proof	3	M1 for $100 x=36.363636 \ldots$ or $10000 x=3636.3636$.. M1 (dep) for subtraction of both sides A1 for $\frac{36}{99}=\frac{4}{11}$ from correct proof. OR M1 starts long/short division of 11 into 4 , set out correctly, with 0.36 seen on the top of the bus stop (oe) with a remainder of 7 M1(dep) Remainder of 4 after the remainder of 7 seen in correct place A1 At least 2 remainders of 4 and one of 7 seen in the correct place and with a statement that the decimal will recur with a cycle length 2 because the remainders have a cycle length 2 .
24	(a) (b)		$\begin{aligned} & (5,-4) \\ & (-2,2) \end{aligned}$	2 2	B2 for (5,-4) (B1 for $(a,-4)$ or $(5, b)$ where $a \neq 5$ or 3 and $b \neq-4$). B2 for $(-2,2)$ (B1 for $(a, 2)$ or $(-2, b)$ where $a \neq-2$ and $b \neq 2$).
25		Let n be any integer Then a pair of consecutive integers are n and $n+1$ Their sum $=2 n+1$ Since n is an integer $2 n$ is even so $2 n+1$ is odd	Proof	3	M1 Sight n and $n+1$ or $n-1$ and n M1 sight of $2 n+1$ oe A1 explanation of $2 n+1 \mathrm{eg}$ 'it's odd' 'it's one more than an even number' (n must have been defined as an integer to earn the A1)

