GCSE Mathematics Mark Scheme P-3 November 2008

5540H/3H					
Question		Working	Answer	Mark	Notes
1	(a)		$3 b c$	1	B1 for $3 b c$ (accept $3 c b$ or $b c 3$ or $c b 3$ or $3 \times b \times c$ oe, but $7 b c-4 b c$ gets no marks)
	(b)		$2 x+5 y$	2	B2 for $2 x+5 y$ (accept $x 2+y 5$ or $2 \times x+5 \times y$ or $x \times 2+y \times 5$) [B1 for $2 x$ or $5 y$ seen; accept $2 \times x, x 2,5 \times y, y 5$, etc.]
	(c)		m^{3}	1	B1 cao
	(d)		$6 n p$	1	B1 for $6 n p$ oe (accept $6 p n, n p 6, p n 6$ but NOT $6 \times p \times n$)

5540H/3H					
Question		Working	Answer	Mark	Notes
2	(a)	$\begin{aligned} & 12 \div 3 \times 2(=8) \\ & 8 \times 40 \end{aligned}$ Alternative $\begin{aligned} & 3 \text { tins }=40 \times 2=80 \\ & 12 \text { tins }=80 \times 4 \end{aligned}$	3.20	3	M2 for $40 \times 12 \div 3 \times 2$ or better (inc. adding 8 lots of 40 p) (M1 for using 2 of the 3 operations or 8 seen) A1 cao OR M1 for 3 tins $=40 \times 2$ M1 (dep) for " 80 " $\times 4$ A1 cao [SC: B2 for sight of digits 320 if M0 scored] [SC: B1 for 480 or 4.80 if M0 scored]
	(b)	$\begin{aligned} & \frac{15}{100} \times 20=3 \\ & \text { OR } 10 \%=20 \div 10=2 \\ & \quad 5 \%=2 \div 2=1 \\ & 15 \%=2+1=3 \\ & 20-3 \\ & \frac{\text { Alternative }}{20 \times 0.85} \end{aligned}$	17	3	M1 for $\frac{15}{100} \times 20$ oe or a correct method to work out 10% and 5% of 20 or 2 and 1 seen A1 for 3 cao A1 ft for $20-$ " 3 " dependant upon M1 scored [SC: B2 for 3 on answer line with no working] Alternative B1 cao for 85 or 0.85 seen M1 for $\frac{" 100-15 \text { " }}{100}$ or " $1-0.15$ " $\times 20$ A1 ft for a correct solution of $\frac{100-15 \text { " }}{100}$ or " $1-0.15$ " $\times 20$ OR 17 (dep on M1 scored)

5540H/3H					
Question		Working	Answer	Mark	Notes
9	(a) (b)		$\begin{aligned} & 5(m+2) \\ & y(y-3) \end{aligned}$	1 1	B1 for $5(m+2)$ or $5(2+m)$. Accept $(5-0)(m+2)$ or $(3+2)(m+2)$ B1 for $y(y-3)$ or $(y-3) y$ or $(y-0)(y-3)$ or $(y-3)(y+0)$
10		$\begin{aligned} & 48 \div 8=6 \\ & 6 \times 5-6 \times 3=12 \end{aligned}$	12	3	M1 for $48 \div{ }^{\prime} 5+3$ ’ M1 (dep) for " 6 " $\times 5$ (or 30 seen) or " 6 " $\times 3$ (or 18 seen) or " 6 " $\times 2$ A1 cao [SC: B2 for 30 or 18 on the answer line with no working]
11		$\begin{aligned} & 360 \div 10=36 \\ & 180-36 \\ & 180 \times(10-2) \div 10 \end{aligned}$	144	3	M1 for $360 \div 10$ or 36 seen M1 (dep) for 180 - " 36 " A1 cao OR M1 for $180 \times(10-2)$ oe or 1440 seen M1 (dep) for " 1440 " $\div 10$ A1 cao
12		$\begin{aligned} & x+30+2 x+3 x=180 \\ & 6 x+30=180 \\ & 6 x=150 \end{aligned}$	25	3	M1 for $x+30+2 x+3 x$ or $6 x+30$ seen or $180-30$ or 150 seen M1 for $6 x+30=180$ or better or $\frac{" 180-30 "}{6}$ A1 cao

5540H/3H					
Question		Working	Answer	Mark	Notes
13	(a)		-1, 0, 1, 2, 3, 4	2	B2 cao (B1 for at least 5 correct and not more than one incorrect integer)
	(b)	$6 x<9+3$	$x<2$	2	M1 for correctly separating x and non x terms or for dividing both sides by 6 [condone use of $=,>, \leq$, or \geq] A1 for $x<2$, accept $x<\frac{12}{6}$ [SC: B1 for $x=2$ with no working. But 2 on the answer line with no working gets no marks]
14			Overlay	2	M1 for correct intersecting arcs A1 for correct angle bisector, within guidelines [SC:B1 if no marks, for line within guidelines]
15	(a)	e.g. $\begin{array}{c:cc} 2: \frac{84}{24} & 84 \\ 2: \frac{42}{2} & 2 / 42 \\ 3: \frac{21}{7} & 2 \backslash 21 \\ 1 & 3 & 3 \end{array}$	$2 \times 2 \times 3 \times 7$	3	M2 for a full systematic method of at least 3 divisions by prime numbers oe factor trees, condone one calculation error. (M1 for 84 written as either 2×42 or 3×28 or 7×12 oe or equivalent division or a full process with 2 calculation errors) A1 for $2 \times 2 \times 3 \times 7\left(\right.$ accept $2^{2} \times 3 \times 7$ but not $\left.2,2,3,7\right)$ [Note: $1 \times 2 \times 2 \times 3 \times 7$ gets M2A0]
	(b)		7	2	M1 for listing factors of 35 and 84 (at least 3 correct for each, condoning one error. This could be in factor trees or factor pairs, etc) A1 cao

5540H/3H					
Question		Working	Answer	Mark	Notes
16	(a)	$v^{2}=6^{2}+2 \times 2.5 \times 9$	9	3	M1 for correct substitution giving $6^{2}+2 \times 2.5 \times 9$ or better M1 (dep) for $\sqrt{" 81 "}$ A1 cao accept ± 9 [SC: B1 for answer of 81 if M0 scored]
	(b)	$v^{2}-u^{2}=2 a s$ OR $\frac{v^{2}}{2 a}=\frac{u^{2}}{2 a}+s$	$\frac{v^{2}-u^{2}}{2 a}$ oe	2	B2 for $\frac{v^{2}-u^{2}}{2 a}$ oe (B1 for $v^{2}-u^{2}=2 a s$ oe or $\frac{v^{2}}{2 a}=\frac{u^{2}}{2 a}+s$ oe) Examples: $s=\frac{v^{2}-u^{2}}{2} \div a \text { gets } \mathrm{B} 2 \quad s=\frac{v^{2}+u^{2}}{2 a} \text { gets } \mathrm{B} 1$ $s=v^{2}-u^{2}-2 a$ without the intermediate $2 a s=v^{2}-u^{2}$ gets B 0
17	(a) (b)		$\begin{aligned} & 3.9 \times 10^{4} \\ & 0.00721 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$

5540H/3H					
Question		Working	Answer	Mark	Notes
18			$\begin{aligned} & (18), 40,75,90,98, \\ & 100 \end{aligned}$	1	B1 for all correct
	(b)			2	B1 ft for 5 or 6 points plotted correctly ± 1 full (2 mm) square at the end of interval dep on sensible table (condone 1 addition error) B1 (dep) for points joined by curve or line segments provided no gradient is negative - ignore any part of graph outside range of their points (SC:B1 if 5 or 6 points plotted not at end but consistent within each interval and joined)
	(c)		approx 46	1	B1 (ft dep on graph being cf) for reading from graph at 50 ± 1 full (2mm) square
19			$\frac{a b}{2}, \pi b c, a b+c d$	3	B1 for $\frac{a b}{2} ;$ B1 for $\pi b c ;$ B1 for $a b+c d$ (-B1 for each additional expression ticked (>3) to a minimum of 0)
20	a(i) (ii)		$\begin{aligned} & 90 \\ & \text { angle in a semi-circle } \\ & =90^{\circ} \end{aligned}$	2	B1 cao B1 for angle in a semi-circle $\left(=90^{\circ}\right)$ or angle at the centre is twice the angle at the circumference or angle subtended by a diameter $=$ 90°.
	b(i) (ii)	$130 \div 2$	65 angle at centre is twice the angle at the circumference	2	B1 cao B1 for angle at the centre is twice the angle at the circumference.

5540H/3H					
Question		Working	Answer	Mark	Notes
21	(a)		$\begin{aligned} & \frac{5}{8} \\ & \frac{5}{8}, \frac{3}{8}, \frac{5}{8} \end{aligned}$	2	B1 for $\frac{5}{8}$ correct for $1^{\text {st }}$ counter B1 for $\frac{5}{8}, \frac{3}{8}, \frac{5}{8}$ correct for $2^{\text {nd }}$ counter
	(b)	$\frac{3}{8} \times \frac{3}{8}$	$\frac{9}{64} \mathrm{oe}$	2	M1 for $\frac{3}{8} \times \frac{3}{8}$ A1 for $\frac{9}{64}$ oe
22	(a)		$3 x(2 x+3 y)$	2	B2 for fully correct (accept $(3 x-0)(2 x+3 y)$ (B1 for $x(6 x+9 y)$ or $3\left(2 x^{2}+3 x y\right)$ or $3 x$ (a linear expression in x and y)
	(b)	$2 x^{2}-4 x+5 x-10$	$2 x^{2}+x-10$	2	B2 for $2 x^{2}+x-10$ (B1 for 3 out of 4 terms correct, with correct signs, or the 4 terms $2 x^{2}, 4 x, 5 x$ and 10 seen, ignoring signs)
23			$\begin{aligned} & 25 \\ & 16 \end{aligned}$	2	M1 for correct use of frequency density to find a unit of area (for example $1 \mathrm{~cm}^{2}=2.5$ or 1 small square $=0.1$) or the area of one block. A1 cao
	(b)		Correct black (1 cm high between 40 and 60)	1	B1 for correct black

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{5540H/3H} \\
\hline \multicolumn{2}{|l|}{Question} \& Working \& Answer \& Mark \& Notes \\
\hline 24 \& \& \[
\begin{aligned}
\& x=0.213131313 \ldots \\
\& 10 x=2.13131313 \ldots \\
\& 1000 x=213.131313 \ldots \\
\& 990 x=211
\end{aligned}
\] \& \[
\frac{211}{990}
\] \& 3 \& \begin{tabular}{l}
M1 for \(0.2131313 \ldots\) or \(0.2+0.0131313 \ldots\). (dots MUST be included) \\
M1 for two correct recurring decimals that, when subtracted, leave a terminating decimal \\
A1 for \(\frac{211}{990}\)
\end{tabular} \\
\hline 25 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \& \[
\begin{aligned}
\& 7 \\
\& 3 \sqrt{5}
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B1 for } 7(\text { accept }-7 \text { or } \pm 7) \\
\& \text { B1 cao }
\end{aligned}
\] \\
\hline 26 \& \& \begin{tabular}{l}
\(A D=C D\) equal sides \\
\(A B=C B\) equal sides \\
\(B D\) is common \\
\(A D B\) is congruent to \(C D B\) (SSS)
\end{tabular} \& \& 3 \& \begin{tabular}{l}
B2 for two of \(A D=C D, A B=C B, B D\) is common OR for BD common and all other sides equal in length (it must be clear that the 'other sides' relate to the two triangles) \\
(B1 for one of these. Note: All sides are of the same length alone is ambiguous and gains B 0) \\
B1 for proof of congruence (SSS or SAS or ASA) dependent upon THREE identities (with reasons)
\end{tabular} \\
\hline 27 \& \begin{tabular}{l}
a(i) \\
(ii) \\
(b)
\end{tabular} \& \& \[
\begin{aligned}
\& \frac{\sqrt{3}}{2} \\
\& -\frac{\sqrt{3}}{2}
\end{aligned}
\] \& 2

2 \& | B1 cao |
| :--- |
| B1 cao |
| B2 cao |
| [B1 for sine curve,starting from the origin with amplitude 4, OR B1 cuts x axis at $90,180,270,360$ and starts from 0] |

\hline
\end{tabular}

5540H/3H					
Question		Working	Answer	Mark	Notes
28		$\begin{aligned} & y^{2}=(3 x+1)^{2} \\ & x^{2}+9 x^{2}+6 x+1=5 \\ & 10 x^{2}+6 x+1=5 \\ & 10 x^{2}+6 x-4=0 \\ & 2\left(5 x^{2}+3 x-2\right)=0 \\ & 2(5 x-2)(x+1)=0 \end{aligned}$	$\begin{aligned} & x=0.4 \\ & y=2.2 \\ & x=-1 \\ & y=-2 \end{aligned}$	6	M1 for $(3 x+1)^{2}$ seen or implied by sight of $9 x^{2}+1$ A1 for $x^{2}+9 x^{2}+6 x+1=5$ or equivalent expanded form M1 (dep) for correct attempt to solve a 3-term quadratic equation (condone omission of $=0$) A1 for $x=0.4, x=-1$ M1 (dep on previous Ms) for sub one value of x into either equation A1 for $y=2.2, y=-2$ (correctly paired with x values) [SC: B1 for one correct pair of solutions if M0 scored]

