5525/05				
No.	Working	Ans.	Mark	Notes
1(a)	$\frac{9}{12}+\frac{8}{12}=\frac{17}{12}=1 \frac{5}{12}$	$6 \frac{5}{12}$	3	M1 for using a common denominator M1 for either $9 / 12$ or $8 / 12$ or $33 / 12$ or $4 / 12$ or $17 / 12$ oe A1 for $\frac{77}{12}$ or $6 \frac{5}{12}$ Alternative M1 for converting $3 / 4$ and $2 / 3$ to decimals M1 for $0.75+0.66$ or better A1 for $6.41 \dot{6}^{\circ}$ oe
(b)	$\begin{aligned} & \frac{1}{2}=0.5, \frac{1}{3}=0 . \dot{3}, \frac{1}{4}=0.25, \\ & \frac{1}{5}=0.2 \end{aligned}$	$\frac{1}{3}$	2	B1 for $1 / 3$ oe B1 (dep) for valid reason e.g. it does not terminate, $1 / 3=$ $0.333(3 . .),$.3 does not divide exactly into 1
2(a)		$90+0.5 m$	2	B1 for $0.5 m$ B1 for $90+{ }^{\prime} 0.5 m$ ' (NB: ignore any $£$ signs)
(b)	$\begin{aligned} & 240=90+0.5 \mathrm{~m} \\ & 150=0.5 \mathrm{~m} \end{aligned}$	300	3	M1 for $240=‘ 90+0.5 m$ ' M1 for ' $0.5 m$ ' $=150$ A1 for 300 Alternative M1 for $240-90$ or 150 seen M1 for ' 150 ' $\times 2$ oe A1 for 300

5525/05				
No.	Working	Ans.	Mark	Notes
7			3	M1 for arcs construction of 60° M1 for arcs bisector of ' 60° ' (not 90°) A1 (dep on both M marks) for 30° within guidelines Alternative M1 for arc construction of 90° M1 for arcs construction of 60° based on perpendicular A1 (dep on both M marks) for 30° within guidelines
	$-3, \ldots, 1, \ldots ., \ldots ., 7$	-3, 1, 7	2	B2 for all values correct (B1 for 2 values correct)
(b)			2	B2 for correct line between $x=-1$ and $x=4$ B1 ft for 4 points plotted \pm one 2 mm sq or for a line with gradient 2 or for a line through $(0,-1)$
(c)		$\begin{gathered} x=1.5 \\ y=2 \end{gathered}$	2	B1 ft for x value $=1.5 \pm$ one 2 mm sq B1 ft for y value $=2 \pm$ one 2 mm sq (SC B1 for $\mathrm{y}=1.5$ and $x=2$)
9(a)		$3 a(a-2)$	2	B2 for 3a(a-2) (B1 for 3($\left.a^{2}-2 a\right)$ or $a(3 a-6)$ or 3a(linear expression in terms of a))
(b)		$1 / 2(P-10)$	2	M1 for correctly isolating $2 q$ or $-2 q$ correctly dividing both sides by 2 or for a correct second step which may follow an incorrect first step A1 for $1 / 2(P-10)$ oe

5525/05				
No.	Working	Ans.	Mark	Notes
13(a) (b)	$800 \times 30 / 50$	480	2 2	B1 for appropriate question, e.g. which of these vegetables do you eat?, tick the boxes of the vegetables you eat B1 (dep) for response boxes or a list of vegetables (condone one vegetable missing and ignore additions) M1 for $800 \times 30 / 50$ or 800×0.6 or ' $800 / 50$ ' $\times 30$ or $2400 \div 5$ or 60% of 800 A1 for 480 cao (SC B1 for 480/800)
14	$-3 \leq y<2.5$	$-3,-2,-1,0,1,2$	3	M1 for dividing a list of integers by 2 or for $\mathrm{y} \geq-3$ and/or $\mathrm{y}<5 / 2$ seen or implied A2 for all integers correct (A1 for 5 correct with no more than one extra)
15	$\begin{aligned} & 3^{2}+4^{2}+12^{2}=169 \\ & \sqrt{ } 169 \end{aligned}$	13	3	M1 for $3^{2}+4^{2}$ or $3^{2}+12^{2}$ or $4^{2}+12^{2}$ or $a^{2}+12^{2}$ (where a is the length of their base diagonal) M1 for $3^{2}+4^{2}+12^{2}$ A1 for 13 cao
16(a) (b)	$2^{30} \div\left(2^{3}\right)^{9}=2^{30-27}$	a^{8} 3	1 2	$\begin{aligned} & \text { B1 for } a^{8} \text { or } a^{2 \times 4} \\ & \text { M1 for }\left(2^{3}\right)^{9} \text { or } 2^{27} \text { or } 2^{3} \text { or } 8^{10} \\ & \text { A1 for } 3 \text { cao } \end{aligned}$

5525/05				
No.	Working	Ans.	Mark	Notes
(b)	$\begin{aligned} & \overrightarrow{R T}=\overrightarrow{R P}+\overrightarrow{P T} \\ & =-5 \mathbf{p}+2(\overrightarrow{P Q}) \\ & =-5 \mathbf{p}+2(4 \mathbf{p}-\mathbf{q}) \\ & =-5 \mathbf{p}+8 \mathbf{p}-2 \mathbf{q} \end{aligned}$	$3 \mathbf{p}-2 \mathbf{q}$	4	B 1 for $\mathrm{PT}=2 \mathrm{PQ}$ or $\mathrm{PQ}=\mathrm{QT}$ seen or implied M1 for a valid vector journey, e.g. RP+PT or RM+MQ+QT seen or implied M1 for $-5 \mathbf{p}+2 \times{ }^{\prime} 4 \mathbf{p}-\mathbf{q}$ ' or $-\mathbf{p}-\mathbf{q}+{ }^{\prime} 4 \mathbf{p}-\mathbf{q} \mathbf{q}^{\prime}$ A1 for $-5 \mathbf{p}+2 \times 4 \mathbf{p}-\mathbf{q}$ or $-\mathbf{p}-\mathbf{q}+4 \mathbf{p}-\mathbf{q}$ or better
21	$\begin{array}{lc}\text { Volume } 27: 125 \\ \text { Length } & 3: 5 \\ \text { Area } & 9: 25\end{array}$	100	3	M1 for recognising need for cube root of 27 or 125 M1 for recognising need to square their scale factor A1 for 100
22	$\begin{aligned} & 3(x-3)-4(x+3)=5 x \\ & 3 x-9-4 x-12=5 x \\ & -x-21=5 x \\ & 6 x=-21 \end{aligned}$	-3.5	4	M1 for $\frac{3}{x+3} \times(x+3)(x-3)-\frac{4}{x-3} \times(x+3)(x-3)$ or $\frac{3(x-3)-4(x+4)}{(x+3)(x-3)}$ or $\frac{3}{x+3} \times \frac{x-3}{x-3}-\frac{4}{x+3} \times \frac{x+3}{x+3}$ or $\frac{5 x}{x^{2}-9} \times(x+3)(x-3)$ M1 (dep) for $3(x-3)-4(x+3)$ or $5 x$ M1 for $3 x-9-4 x \pm 12=5 x$ A1 for -3.5
23	$\frac{50}{500} \times 50$	5	2	M1 for $\frac{50}{500} \times 50$ oe A1 for 5

