5523/04				
No.	Working	Ans.	Mark	Notes
1(a)	$\begin{aligned} & 450 \times 28=12600 p=£ 126 \\ & 9.51 \times 15=£ 142.65 \\ & 142.65+126= \end{aligned}$	268.65	3	M1 for 450×28 or 0.28×450 or the digits 126 seen M1 for 9.51×15 or 951×15 or the digits 14265 seen A1 cao
(b)	$\frac{15}{450}$	$\frac{1}{30}$	2	$\begin{aligned} & \text { M1 } \frac{15}{450} \\ & \text { A1 } \frac{1}{30} \\ & \text { SC B1 for } 0.03(\ldots) \text { or } 3.33(\ldots .) \% \end{aligned}$
(c)	360×1.175 or $\begin{aligned} & 360 \times \frac{17.5}{100}=63 \\ & 360+63 \end{aligned}$	£423	3	M2 for 360×1.175 oe A1 cao OR M1 $360 \times \frac{17.5}{100}(=63)$ or attempt at $10 \%,+5 \%,+2.5 \%$: eg digits $36+18+9$ M1 (dep) 360 + '63' A1 cao
2 (a)		1010	1	B1 cao
(b)		6.0-7.5 exclusive	1	B1 for 6.0-7.5 exclusive
(c)			1	B1 cao
(d)		Graph	1	B1 cao Line from $(11.10,20)$ to ($11.50,0$); tolerance $\pm 2 \mathrm{~mm}$ Accept freehand line if intention is clear
(e)		40	2	M1 $20 \div 30$ or $20 \div 0.5$ oe or 0.6 or 0.66 seen A1 cao SC Award B1 for $20 \div 40$ in working or 0.5 or 30 given as answer.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{5523/04} \\
\hline No. \& Working \& Ans. \& Mark \& Notes \\
\hline 11(a) \& $$
\frac{451-376}{376} \times 100
$$
$$
3.2 \div 8 \times 3=1.2
$$ \& 19.9\%
$$
4.4
$$ \& 3

2 \& | M1 $\frac{451-376}{376}=\frac{75}{376}=0.199$ |
| :--- |
| M1 (dep) $\frac{\text { '451-376' }}{376} \times 100$ |
| A1 19.9-19.95\% |
| Alternative: |
| M2 $\frac{451}{376} \times 100-100$ |
| A1 19.9-19.95\% |
| SC: B1 for 119.9-119.95 or $\frac{451-376}{451} \times 100$ oe |
| NB: ignore 0s for the purpose of awarding the method marks. |
| M1 digits 32 with either $\div 8$ or $\times 3$ or 4 seen or 1.2 seen or digits 96 seen |
| A1 cao | \\

\hline | 12(a) |
| :--- |
| (b) | \& \[

$$
\begin{aligned}
& \frac{5 \times 12}{2} \\
& \text { Area } A B C D=17^{2}=289 \\
& \text { Area } P Q R S=289-4 \times \text { " } 30 \text { " } \\
& (5+12)^{2}=289 \\
& 289-4 \times \prime 30
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 30 \\
& 169
\end{aligned}
$$
\] \& 2

3 \& | M1 $\frac{5 \times 12}{2}$ |
| :--- |
| A1 cao |
| M1 for Area $A B C D=17^{2}$ or 289 seen |
| M1 (dep) for Area PQRS = " 289 " $-4 \times$ " 30 " |
| A1 cao OR |
| M1 $5^{2}+12^{2}$ |
| M1 (dep) $\sqrt{25+144}$ or 13 or 13^{2} |
| A1 cao |
| SC B2 for 169^{2} or 28561 as answer | \\

\hline
\end{tabular}

5523/04				
No.	Working	Ans.	Mark	Notes
13		$9 n, 3 \times 6 n,(3 n)^{2}$	3	B1 each correct value (-B1 each tick over 3, to a minimum of BO).
14	$2000 \times 1.05^{2}=2000 \times 1.1025$ or $\begin{aligned} & 2000 \times 1.05=2100 \\ & 2100 \times 1.05=2205 \end{aligned}$	£2205	3	M2 2000×1.05^{2} (M1 $2000 \times 1.05^{n}, n \neq 2$) A1 cao Or M1 $\frac{5}{100} \times 2000$ (oe) or 100 or 200 or 2100 or 2200 seen M1 (dep) $\frac{5}{100} \times(2000+" 100 ")$ A1 cao SC B2 for $£ 2315.25$ seen (3 yrs)
15(a) (b)	$\begin{aligned} & 4 \times 4=16 \\ & 5 \times 7=35 \\ & 6 \times 10=60 \\ & 7 \times 12=84 \\ & 8 \times 5=40 \\ & 9 \times 2=18 \\ & \text { Mean }=\frac{\Sigma f x}{\Sigma f}=" \frac{253}{40} " \end{aligned}$	Reason 6.325	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	B1 eg "mode is 7" "the mode is the one of which there is the most" "because its got the lowest frequency" M1 $\Sigma f x$ (at least 3, implied by answers) or 253 seen M1 (dep) $\frac{\Sigma \mathrm{fx}}{\Sigma \mathrm{f}}$ A1 6.325, 6.33, 6.3, 6.32

04				
No.	Working	Ans.	Mark	Notes
(c) (d)		7 Beccy, as a bigger sample	1 1	B1 cao NB 6.5 leading to 7 gets B0 B1 for Beccy and reason
16	$\begin{aligned} & 5.6^{2}+10.5^{2} \\ & \sqrt{31.36+110.25}=\sqrt{141.61} \end{aligned}$	11.9	3	M1 $5.6^{2}+10.5^{2}$ M1 (dep) $\sqrt{31.36+110.25}$ A1 cao
17	$\frac{1}{2} \pi \times 10^{2}$	$157 \mathrm{~cm}^{2}$	3	M1 for sight of $\frac{1}{2} \pi \times 10^{2}$ or $\pi \times 10^{2}$ A1 157-157.1 B1 (indep) cm^{2}
18	$\begin{aligned} & 2 \times 360,2 \times 2 \times 180, \\ & 2 \times 2 \times 2 \times 90,2 \times 2 \times 2 \times 2 \times 45 \end{aligned}$	$2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5$	2	M1 at least two correct steps to find 720 as a product of its prime factors or sight of factors 2, 3, 5 on a factor tree oe A1 cao accept $2^{4} \times 3^{2} \times 5$
19	$\begin{aligned} & 27=\frac{4(x+10)}{2} \\ & 27=2 x+20 \end{aligned}$	3.5	3	M1 $27=\frac{4(x+10)}{2}$ M1 Expansion to $4 x+40$ or $\times 2$ to give $54=4(x+10)$ A1 for 3.5 , accept $\frac{14}{4}$ or $\frac{7}{2}$ SC: B1 for $x=11$

/04				
No.	Working	Ans.	Mark	Notes
23	$\begin{aligned} & \frac{2 \times 2.2 \times 10^{12} \times 1.5 \times 10^{12}}{2.2 \times 10^{12}-1.5 \times 10^{12}} \\ & =\frac{6.6 \times 10^{24}}{7 \times 10^{11}} \end{aligned}$	9.43×10^{12}	3	M1 6.6×10^{24} or 7×10^{11} or 0.7×10^{12} or as ordinary numbers or calculator notation M1 $\frac{6.6 \times 10^{24}}{7 \times 10^{11}}$ or as ordinary number or calc notation A1 9.42×10^{12} to 9.43×10^{12} SC B1 for $9.4 \ldots \times 10^{n}$ where $n \neq 12$ and an integer
24	$\begin{aligned} & 6 x+2 y=16 \\ & 4 x+2 y=9 \\ & 2 x \quad=7, x=3.5 \\ & 3 \times 3.5+y=8, y=-2.5 \end{aligned}$	$x=3.5, y=-2.5$	3	M1 full method to eliminate x or y, allow one accuracy error M1 (dep) for substitution of one variable in one of the equations, or by appropriate method after starting again A1 both cao
25	$\begin{aligned} & \tan x=\frac{4.5}{12}=0.375 \\ & x=\tan ^{-1} 0.375 \end{aligned}$	20.6	3	M1 \tan and $\frac{4.5}{12}$ M1 $\tan ^{-1}\left(\frac{4.5}{12}\right)$ A1 20.55-20.6 RAD: 0.3587 GRAD: 22.84 for M2
26	$130 \div 2$	$\begin{aligned} & 65 \\ & \text { Reason } \end{aligned}$	2	B1 cao B1 'angle at centre is twice the angle at the circumference' Allow "origin \& O \& middle" and "edge \& perimeter"

Additional notes for Paper 4: confidential to examiners. Not for publication.
Graph: Q21b

Notes: pie chart Q6.
Due to an unfortunate error in printing the paper, the 90° angle has drifted from the actual centre of the circle. To compensate, the tolerance n the angles has therefore been extended to $\pm 4^{\circ}$. This is shown on the overlay.

Call up the overlay. Ignore the centre squares, but position the overlay on the ends of the given lines using the blue T shapes by moving the top square with the mouse.
Once positioned, you will now find that you can rotate the bottom square, and the overlay correctly rotates around the given circle.
If candidates draw the sectors in the correct order marking is straight-forward.
If candidates draw the sectors in the wrong order, rotate the overlay to mark:
PIG the lines should both fall within the 4° tolerance lines on the overlay, even if this means they have the benefit of a wider tolerance

HEN rotate until a T shape falls on the intersection between the circumference and one of the sector lines; make sure the other T shape remains on the circumference. The other sector line should then fall within the 4° tolerance lines. Any difficulty in placing the overlay, give the benefit to the candidate and/or check with the angle measurer.

SHEEP rotate until a T shape falls on the intersection between the circumference and one of the sector lines; make sure the other T shape remains on the circumference. The other sector line should then fall within the 4° tolerance lines. Any difficulty in placing the overlay, give the benefit to the candidate and/or check with the angle measurer.

Question 15(a)
B1: $\quad 9$ is not the most common number
because its got the lowest frequency
because 9 is not the number that has the most frequency
the mode has the highest number in the frequency
because the amount of houses with 9 rooms is less than all the others
9 does not occur the most

B0: 9 has only 2 rooms
9 is not the maximum
because 12 is the mode
because the mode is the highest number in the frequency

Question 15(d)

B1: Because she takes the bigger sample
Because she has got more rooms
Becky has 80 houses but Ali only has 40
Becky has a bigger frequency

