5523/03				
No.	Working	Ans.	Mark	Notes
1(a)	$\begin{gathered} 375 \\ \quad 24 \end{gathered} \times$300 70 5 6000 1400 100 1200 280 20$\begin{aligned} & 6000+1400+100+1200+ \\ & 280+20=9000 \end{aligned}$	90.00	3	M1 for a complete method with relative place value correct, condone 1 multiplication error, addition not necessary A1 for 9000 A1 (dep on M1) for correct conversion of their total into $£ s$ OR M1 for a completed grid with not more than 1 multiplication error, addition not necessary A1 for 9000 A1 (dep on M1) for correct conversion of their total into $£$ s OR M1 for sight of a complete partitioning method, condone 1 multiplication error, final addition not necessary A1 for 9000 A1 (dep on M1) for correct conversion of their total into $£ s$ OR M1 for repeated addition (condone 23 or 25) with attempt to total. A1 for 9000 A1 (dep on M1) for correct conversion of their total into £s

5523/03				
No.	Working	Ans.	Mark	Notes
(c)(i) (ii)	$\begin{aligned} & \frac{1}{2}=0.5, \frac{1}{3}=0 . \dot{3}, \frac{1}{4}=0.25, \\ & \frac{1}{5}=0.2 \end{aligned}$	$\frac{1}{3}$	2	B1 for $1 / 3$ or equivalent B1 (dep)for valid reason e.g. it does not terminate, $\frac{1}{3}=0 . \dot{3}, 3$ doesn't divide into 1 exactly
3(a)(i) (b)(i) (ii)	$\begin{align*} & 180-70 \tag{ii}\\ & 180-70-70 \end{align*}$	110 40	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	B1 for 110 cao B1 (indep)for (angles on a straight) line (add to 180°) M1 for 180-70-70 oe A1 for 40 cao B1 (indep) for 2 equal (or base) angles (in an isosceles triangle) or (angles in a) triangle add to 180 or exterior angle is equal to sum of opposite interior angles. (B0 if any incorrect reasoning given e.g parallel, equilateral)
4(a) (b) (c)	$\frac{16}{40}$	9 5 $\mathbf{9}$ $\mathbf{7}$ 21 $\mathbf{4}$ 7 $\mathbf{8}$ $\mathbf{1 9}$ $\mathbf{9}$ 16 $\mathbf{1 5}$ 40 $\frac{2}{5}$	1 3 1	B1 cao B3 for all correct (B2 for 4 or 5 correct) (B1 for 1 or 2 or 3 correct) B1 for $2 / 5$ oe

5523/03				
No.	Working	Ans.	Mark	Notes
5(a)		8.90	1	B1 for 8.80 to 9.00 inclusive
(b)		15.60	1	B1 for 15.51 to 15.99
(c)		900	2	M1 for a complete method (reading from graph and multiplication) A1 for 880-960
$6(a)$	$360 \div 10$	36	2	M1 for $360 \div 10$ A1 for 36
(b)		72	1	B1 ft for 72 or twice (a) if (a) is less than 90
7	$360 \div 40$	9	2	M1 for attempting to find how many 40s in 360 (usually $360 \div 40$) A1 for 9
8(a)	$\begin{aligned} & 45678 \\ & 56789 \\ & 678910 \end{aligned}$		2	B2 if fully correct (B1 for 1 row or 2 columns correct)
(b)	$(1,4) ;(2,3) ;(3,2) ;(4,1)$		2	B2 if fully correct (B1 for either (2,3) or (3,2), ignore extras)
(c)	$\begin{aligned} & (2,6) ;(3,5) ;(3,6) ;(4,4) ;(4,5) \text {; } \\ & (4,6) \end{aligned}$		2	B2 if fully correct (order within brackets need not be consistent) (B1 for 3 pairs correct, ignore extras)

5523/03				
No.	Working	Ans.	Mark	Notes
14(a)	-3,..., 1,...., ..., 7	-3, 1, 7	2	B2 for all values correct (B1 for 2 values correct)
(b)			2	B2 cao for line between $x=-1$ and $x=4$ (B1 ft for 4 points plotted \pm one 2 mm sq or for a line with gradient 2 or for a line passing through ($0,-1$)
(c)		$\begin{gathered} x=1.5 \\ y=2 \end{gathered}$	2	B1 ft for x value $=1.5 \pm$ one 2 mm sq B1 ft for y value $=2 \pm$ one 2 mm sq $\mathrm{SC}: \mathrm{B} 1$ for x and y transposed
15(a)			2	B2 for trapezium with base 5 cm , ht 2 cm and top 3 cm (B 1 for a trapezium with exactly 2 right angles)
(b)			2	B2 for rectangle with length 5 cm and width 2 cm and line at 3 cm from one edge (B1 for a rectangle of length 5 cm or width 2 cm , do not accept a square, or for a rectangle with an interior line parallel to the shorter sides) NB: orientation must be correct in (a) but not in (b) Do not accept extra lines in (a) or (b)
16	Rotation 90° clockwise centre $(-2,3)$		3	B1 for rotation B1 for 90° clockwise or 270° anticlockwise or -90° or 270° or $\frac{1}{4}$ turn clockwise or $\frac{3}{4}$ turn anticlockwise B1 for $(-2,3)$ NB: a combination of transformations gets B0

5523/03				
No.	Working	Ans.	Mark	Notes
17(a)		$x(x-5)$	2	B2 for $x(x-5)$ (B1 for $x($ linear expression in $x)$)
(b)		$3 a(a-2)$	2	B2 for $3 a(a-2)$ (B1 for $3\left(a^{2}-2 a\right)$ or $a(3 a-6)$ or $3 a$ (linear expression in $\left.a\right)$)
(c)	$2 q=P-10$	$1 / 2(P-10)$	2	M1 for correctly isolating $2 q$ or $-2 q$ or for correctly dividing both sides by 2 or for a correct step which may follow an incorrect first step A1 for $1 / 2(P-10)$ oe
(d)		$y^{2}-y-12$	2	B2 for $y^{2}-y-12$ (B1 for 3 out of 4 terms in $y^{2}+3 y-4 y-12$)
18(a)	$35 / 56 \times 100$	62.5\%	2	M1 for $35 / 56 \times 100$ A1 for 62.5% oe
(b)	$\begin{aligned} & 40 / 100 \times 35=14 \\ & 14 / 56 \end{aligned}$	$1 / 4$	4	M1 for $40 / 100 \times 35$ A1 for 14 M1 ft for " 14 "/56 oe A1 cao for $1 / 4$

5523/03				
No.	Working	Ans.	Mark	Notes
$\begin{gathered} \text { 19(a)(i) } \\ \text { (ii) } \end{gathered}$		$\begin{aligned} & \hline 7.9 \times 10^{3} \\ & 3.5 \times 10^{-4} \end{aligned}$	2	$\begin{array}{\|l\|} \hline \text { B1 cao } \\ \text { B1 cao } \end{array}$
(b)	$\begin{aligned} & 4 \div 8=0.5 \\ & 10^{3} \div 10^{-5}=10^{8} \end{aligned}$	5×10^{7}	2	M1 for $4 \div 8=0.5$ or $10^{3} \div 10^{-5}=10^{8}$ or $\frac{4000}{0.00008}$ or 5×10^{n}, $n \neq 7$ A1 for 5×10^{7} cao
20(i)		73	3	B1 for $72-74$ inclusive
(ii)	80-65	15		M1 for identifying 30 and 90 (check lines on diagram) A1 for 14-17
21(a)	$\begin{aligned} & \frac{P Q}{2}=\frac{12}{3} \\ & P Q=\frac{12 \times 2}{3} \end{aligned}$	8	2	M1 for $\frac{12}{3}$ or $\frac{3}{12}$ or 4 or $\frac{1}{4}$ or 0.25 A1 for 8
(b)	$\begin{aligned} & \frac{B C}{3}=\frac{10}{12} \\ & B C=\frac{10 \times 3}{12}=2.5 \end{aligned}$	12.5	3	M1 for $\frac{10}{4}$ or $\frac{4}{10}$ or 0.4 A1 for 2.5 A1 ft for " 2.5 " +10 (dep on M1 awarded)

