Paper 5525_06				
No	Working	Answer	Mark	Notes
1		273	2	M1 for $728 \div 8$ or $728 \div$ " $3+5$ " or 91 A1 cao SC B1 for 455 or 273:455
2		$3 n-1$	2	B2 for $3 n-1$ oe (B1 for $3 n+k$ where $k \neq-1$ but k could be 0)
3	3 24 3.7 $46.9(53)$ 4 60 3.8 $51.0(72)$ 3.1 $26.6(91)$ 3.9 $55.4(19)$ 3.2 $29.5(68)$ 3.21 $29.8(66 \ldots)$ 3.3 $32.6(37)$ 3.22 $30.1(66 \ldots)$ 3.4 $35.9(04)$ 3.23 $30.4(68 .)$. 3.5 $39.3(75)$ 3.24 $30.7(72 \ldots)$ 3.6 $43.0(56)$ 3.25 $31.0(78 \ldots)$ or 31	3.2	4	B2 for trial between 3.2 and 3.3 inclusive (B1 for trial between 3 and 4 inclusive) B1 for different trial between 3.21 and 3.25 inclusive B1 (dep on at least one previous B1) cao for 3.2 NB: embedded answers: - B 1 ; award Bs for evaluations rounded or truncated to at least 1 dp or for 31
4	2 is the only even prime number and the product of 2 odd numbers is odd	Yes	2	B2 for 'yes' and '2 is the only even prime number and the product of two odd numbers is odd' oe (B1 for 'yes' and either ' 2 is the only even prime number' oe or 'the product of two odd numbers is odd' oe)
5	$\begin{aligned} & 45^{2}+34^{2}= \\ & 2025+1156=3181 \\ & \sqrt{ } 3181=56.4 \end{aligned}$	56	4	M1 for $45^{2}+34^{2}$ M1 for $\sqrt{ }(2025+1156)$ A1 for $56.4 \ldots$ B1 for rounding their diagonal to the nearest integer (dep on evidence from decimal) NB 56 with no incorrect working as the final answer gets full marks. NB Scale drawings result in 0 marks.

Paper 5525_06				
No	Working	Answer	Mark	Notes
6	$\begin{aligned} & 2000 \times(1.055)^{3} \\ & \text { Interest }=2348.48-2000= \end{aligned}$	£348.48	3	M1 for 5.5/100 $\times 2000$ (oe) or 330 or $16.5 / 100 \times 2000$ or 2330 or 110 or 2110 M1 (dep) for $5.5 / 100 \times(2000+" 110 "+" 116.05 ")$ or $122.4 \ldots$ seen A1 cao (accept only 348.48 or 348.49) OR M2 for $2000 \times(1.055)^{3}$ or $2348.48(\ldots)$ or 2348.49 seen (M1 for $\left.2000 \times(1.055)^{n}, n \neq 3\right)$ A1 for 348.48 or 348.49 [SC: B2 for 2348.48-2348.49]
7 (a) (b)		Line Region	2	B 2 line fully within tramlines, crossing AB and CD (B1 a straight line which crosses AB within the tramline, and also crosses CD) NB: Accept dotted or dashed lines, but not curves; accept freehand if considered to be straight. SC B 1 for the perpendicular bisector of $A B$ reaching halfway or more from $A B$ B2 correct arc $\pm 2 \mathrm{~mm}$ and shaded within. Allow dotty or continous arc. (B1 inaccurate arc and shaded or accurate arc unshaded)
8	$\begin{aligned} & 65 \times 12=780 \\ & 75 \times 22=1650 \\ & 85 \times 23=1955 \\ & 95 \times 24=2280 \\ & 105 \times 19=1995 \\ & 8660 / 100= \end{aligned}$	86.6	4	M1 for use of $f x$ with x consistent within intervals (including end points). Allow one slip even if outside interval M1 (dep) for use of midpoints M1 (dep on $1^{\text {st }} \mathrm{M} 1$) for use of $\sum f x / 100$ or $\sum f x / \sum f$ A1 86.6

Paper 5525_06				
No	Working	Answer	Mark	Notes
9	Distance \div time: $1400 \div 2 \mathrm{~h} 20 \mathrm{~min}$ 20 mins is $\frac{1}{3}$ hour $1400 \times 3 \div 7=$	600 kph	3	B1 20 mins as $\frac{1}{3}$ hour or as $0.33 \ldots$...hour M1 for distance \div time eg $1400 \div$ " 2 h 20 min" A1 cao OR B1 2 hour $20 \mathrm{~min}=140(\mathrm{~min})$ M1 Speed $=\frac{1400}{140}=(10 \mathrm{~km}$ per minute $)$ A1 cao
10 (a)	$(x+18)+2 x+(2 x+7)=180$	Equation	2	B2 for $(x+18)+2 x+(2 x+7)=180$ oe (B1 for $(x+18)+2 x+(2 x+7)$)
(b)	$\begin{aligned} & 5 x+25=180 \\ & 5 x=155 \end{aligned}$	31	2	M1 for simplifying to at least $5 x+25=180$ or 360 (may be earned in (a)) A1 for $x=31$
(a) (b)	$(-14) \quad-4 \quad(0) 414$	$-4,4,14$ curve	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	B2 for all 3 values correct (B1 for 1 or 2 values correct) B1 for all 5 points plotted correctly $\pm 1 / 2$ square (ft from table if at least B1 awarded in (a)) B1 (indep) ft for any smooth curve through their points

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525_06} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \[
8 \times \frac{10}{4}
\]
\[
15 \times \frac{4}{10}
\] \& 20

6 \& 2

2 \& | M1 $\frac{10}{4}$ or $\frac{4}{10}$ or 0.4 or 2.5 oe seen |
| :--- |
| A1 cao |
| NB ratios get M0 unless of the form 1:n OR |
| M1 $\frac{8}{4}, \frac{4}{8}$ oe seen |
| A1 cao |
| M1 $15 \times \frac{4}{10}$ oe |
| A1 cao | \\

\hline | (a) |
| :--- |
| (b) | \& \[

9.9 \times 10^{8}-6.0 \times 10^{7}
\]

$$
\begin{aligned}
& \frac{6.0-4.5}{4.5} \times 100=\frac{1.5}{4.5} \times 100= \\
& \text { or } \frac{6.0 \times 10^{7}-4.5 \times 10^{7}}{4.5 \times 10^{7}} \times 100
\end{aligned}
$$ \& \[

\pm 9.3 \times 10^{8}
\]

$$
33.3 \%
$$ \& 2

3 \& | M1 for $99 \times 10^{7}-6.0 \times 10^{7}$ or $9.9 \times 10^{8}-0.60 \times 10^{8}$ or correct conversion of either to an ordinary number or 930000000 or 9.3×10^{n} where n is any positive integer |
| :--- |
| A1 cao |
| M2 $\frac{6.0 \times 10^{7}-4.5 \times 10^{7}}{4.5 \times 10^{7}} \times 100$ oe |
| (M1 for $\frac{6.0 \times 10^{7}-4.5 \times 10^{7}}{4.5 \times 10^{7}}$ or $\frac{6.0 \times 10^{7}-4.5 \times 10^{7}}{6.0 \times 10^{7}} \times 100$ oe |
| A1 33.3-33.4 |
| OR |
| M2 $\frac{6.0 \times 10^{7}}{4.5 \times 10^{7}} \times 100-100$ or 33.3% |
| 4.5×10^{7} |
| (M1 $\frac{6.0 \times 10^{7}}{4.5 \times 10^{7}} \times 100$ or 133.3%) |
| A1 33.3-33.4 |
| NB Accept any of the above expressions without any reference to 10^{7}. | \\

\hline
\end{tabular}

Paper 5525_06				
No	Working	Answer	Mark	Notes
14	$\operatorname{LCM}(40,24)=120$ Bread buns $120 \div 40$ Burgers 120 $\div 24$ OR Bread buns: 40 is $2 \times 2 \times 2$ ($\times 5$) Burgers: $\quad 24$ is $2 \times 2 \times 2$ $(\times 3)$	Bread Buns 3 Burgers 5	3	M1 attempt to find LCM by eg lists of multiples, or summing of 40 s and summing of 24 s , with at least 3 numbers in each list A1 identify 120 as LCM A1 cao (both) OR M1 expansion of either number into its prime factors in a factor tree or 8×5 or 8×3 A1 both expansions correct A1 cao (both) SC B2 if answers given the wrong way around
15	$\begin{aligned} & \sin 32=\frac{A B}{12} \\ & A B=12 \times \sin 32 \\ & A B=6.35903 \ldots \end{aligned}$	6.36	3	M1 $\sin 32=\frac{A B}{12}\left(\right.$ accept $\left.\operatorname{Sin} \frac{A B}{12}\right)$ M1 $12 \times \sin 32$ or 12×0.5299. A1 accept $6.359-6.360$ SC Gradians 5.78(1...) Radians 6.62 Get M1M1A0 OR Use of Sine Rule $\frac{\sin 32}{A B}=\frac{\sin 90}{12} \quad \text { or } \quad \frac{A B}{\sin 32}=\frac{12}{\sin 90}$ $A B=\frac{12 \times \sin 32}{\sin 90} \quad \mathrm{M} 1$ $A B=6.359-6.36 \quad \mathrm{~A} 1$ SC Gradians 5.85(...) Radians 7. 40(...) M1M1A0

Paper 5525_06				
No	Working	Answer	Mark	Notes
16	$\begin{aligned} & 8 \times 41=328 \\ & 2 \times 29=58 \\ & 328-58=270 \\ & 270 \div 6=45 \end{aligned}$	45	3	M1 for either $8 \times 41(=328)$ or $2 \times 29(=58)$ M1 (dep) " $328 "$ - " $58 "$ (=270) A1 cao NB 328 and /or 58 on the answer line gets M1 (implied); 270 on the answer line gets M2 (implied)
17 (a) (b)	$x^{2}-4 x+3 x-12=x^{2}-x-12$ $6 x^{2}-8 x+15 x-20=6 x^{2}+7 x-20$	$x^{2}-x-12$ $6 x^{2}+7 x-20$	2 2	M1 for exactly 4 terms correct ignoring signs ($x^{2}, 4 x, 3 x, 12$) or 3 out of 4 terms with correct signs $\left(x^{2},-4 x,+3 x,-12\right)$ A1 cao M1 for exactly 4 terms correct ignoring signs ($6 x^{2}$, $8 x, 15 x, 20)$ or 3 out of 4 terms with correct signs $\left(6 x^{2},-8 x\right.$, $+15 x,-20$) A1 cao
(c)	$(x+2)(x+5)$	$(x+2)(x+5)$	2	B2 cao (B1 for exactly one of $(x+2),(x+5))$
(d)		$12 p^{8} q^{3}$	2	B2 cao (B1 for any 2 out of 3 terms correct in a product or 3 terms correct in a sum or part product)
(e)	$\begin{aligned} & 6=15+4(q-5) \\ & 6=15+4 q-20 \\ & 11=4 q \end{aligned}$	$2 \frac{3}{4}$	3	M1 for correct substitution of p and t. M1 for correct expansion of $4(q-t)$ oe (eg $4 q-20,4 q-4 t)$ A1 $11 / 4$ or $23 / 4$ or 2.75 OR M1 for correct substitution of p and t. M1 for $\frac{p-3 t}{4}=q-t$ oe A1 $11 / 4$ or $23 / 4$ or 2.75

Paper 5525_06				
No	Working	Answer	Mark	Notes
(b) (c)	$T=k x ; 150=6 k ; k=25$ $\begin{aligned} & T=25 \times 15= \\ & 600=25 x ; \quad x=600 \div 25= \end{aligned}$	$\begin{gathered} T=25 x \\ \\ 375 \\ 24 \end{gathered}$	3 1 1	M1 for $T=k x, k$ algebraic M1 subs $T=150$ and $x=6$ into $T=k x^{\mathrm{n}} \quad(n \neq 0)$ A1 for $T=25 x$ oe SC B1 $T \propto 25 x$ oe B1 ft on $k, k \neq 1$ B1 ft on $k, k \neq 1$
19	$\begin{aligned} & 120 \times 50=10.5263 \\ & 570 \\ & 250 \times 50=21.9298 \\ & 570 \\ & 200 \times 50=17.5438 \\ & 570 \end{aligned}$	$\begin{aligned} & 10 \\ & 22 \\ & 18 \end{aligned}$	3	M1 method shown eg $\overline{120+250+200} \times 50$ or one of 10.5(263) 21.9(298), 17.5(438) OR $570 \div 50=11.4$ and one of $120 \div 11.4=10.526 \ldots), 270$ $\div 11.4(=21.9298 \ldots), 200 \div 11.4(=17.5438 \ldots)$ A1 for $10.5(263), 21.9(298), 17.5(438)$ or $11,22,18$ B1 correction to add to 50 : $10,22,18$ or $11,22,17$
20	$\begin{aligned} & x(x+1)+4(2 x-3)=(2 x-3)(x+1) \\ & x 2+x+8 x-12=2 x 2+2 x-3 x-3 \\ & x 2-10 x+9=0 \\ & (x-9)(x-1)=0 \end{aligned}$	$\mathrm{x}=1,9$	5	M1 for multiplying through by common denominator ($2 \mathrm{x}-$ 3) $(x+1)$ M1 (dep)for either $\mathrm{x} 2+\mathrm{x}+8 \mathrm{x}-12$ or $2 \mathrm{x} 2+2 \mathrm{x}-3 \mathrm{x}-3$ oe A1 for correct quadratic ($=0$) M1 for a correct method to solve 3 term quadratic A1 cao for both solutions
21	$\begin{aligned} & \mathrm{AB} 2=82+92-2 \times 8 \times 9 \times \cos 40 \\ & \mathrm{AB} 2=64+81-144 \times \cos 40 \\ & \mathrm{AB} 2=145-144 \times 0.766 \\ & \mathrm{AB} 2=145-110.31 \ldots=34.6896 \\ & \mathrm{AB}=\sqrt{ } 34.6796=5.8897877 \end{aligned}$	5.89	3	M1 Subs in Cos Rule: $82+92-2 \times 8 \times 9 \times \cos 40$ M1 correct order of evaluation of $82+92-2 \times 8 \times 9 \times \cos 40$ A1 cao $5.88-5.89$ SC: Award B2 for one of $\mathrm{AB} 2=241.03 \ldots$ or $\mathrm{AB}=15.525 \ldots \quad$ (radians) $\mathrm{AB} 2=28.50 \ldots$ or $\mathrm{AB}=5.33 \ldots$ (gradians)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525_06} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline (b) \& \begin{tabular}{l}
Column \(60 \leq w<75\) at 10 \\
Column \(75 \leq w<95\) at 4
\end{tabular} \& \[
\begin{gather*}
24 \tag{a}\\
30 \\
10 \\
4
\end{gather*}
\] \& \[
\begin{aligned}
\& 2 \\
\& 2
\end{aligned}
\] \& \begin{tabular}{l}
B1 24 cao \\
B1 30 cao \\
B1 10 and correct width (\(\mathrm{tol} \pm \frac{1}{2}\) small square) \\
B1 4 and correct width (tol \(\pm \frac{1}{2}\) small square)
\end{tabular} \\
\hline \begin{tabular}{l}
(b) \\
(c) \\
(d)
\end{tabular} \& \[
\frac{100.5}{10.515}
\]
\[
\frac{99.5}{10.525}
\] \& 100.5
10.515
9.5577746

$9.45368 .$. \& | 1 |
| :--- |
| 1 |
| 2 |
| 2 | \& | B1 cao |
| :--- |
| B1 cao |
| M1 for greatest distance divided by least time |
| Where $100<$ greatest distance $\leq 100.5,10.51 \leq$ least time $<$ 10.52 |
| A1 for $9.555-9.56$ |
| M1 for least distance divided by greatest time Where $99.5 \leq$ least distance $<100,10.52<$ greatest time ≤ 10.53 |
| A1 for $9.45-9.455$ | \\

\hline
\end{tabular}

Paper 5525_06				
No	Working	Answer	Mark	Notes
24	$\begin{aligned} & \frac{4}{7} \times \frac{4}{7} \times \frac{3}{7}+\frac{3}{7} \times \frac{3}{7} \times \underline{4}= \\ & \frac{48+36}{343}=\frac{84}{343} \end{aligned}$ But there are three ways this can be achieved: BBG, BGB, GBB So the probability is $\begin{aligned} & \frac{84}{343} \times 3 \\ & \text { OR } \quad 1-\frac{64}{343}-\frac{27}{343} \end{aligned}$ NB: $84 / 343=0.244897 ; 252 / 343=$ 0.73469 $\frac{4}{7}=0.57(142 \ldots), \frac{3}{7}=0.42(857 \ldots)$	$\frac{252}{343}$	3	M1 for $\frac{4}{7} \times \frac{4}{7} \times \frac{3}{7}$ or $\frac{3}{7} \times \frac{3}{7} \times \frac{4}{7}$ oe or $\left(\frac{4}{7}\right)^{3}$ oe or $\left(\frac{3}{7}\right)^{3}$ oe or $\frac{91}{343}$ or $0.10(49 \ldots)$ or $0.13(99 \ldots$.) M1 (indep) for identification of all 6 outcomes (M2 for $1-\left[\left(\frac{4}{7}\right)^{3}+\left(\frac{3}{7}\right)^{3}\right]$) oe A1 $\frac{252}{343}, \frac{36}{49}, 0.73(469 \ldots)$ oe
$25 \quad \text { (a) }$ (b)	$\begin{aligned} & \frac{1}{3} \times \pi \times 5^{2} \times 8=\pi \times 25 \times 8 \div 3= \\ & 209.4395 \\ & \text { Base radius }=\underline{216} \times 15=9 \\ & \text { Height }=\sqrt{ }\left(15^{2}-9^{2}\right)= \end{aligned}$	209-210 12	2 4	M1 for $\frac{1}{3} \times \pi \times 5^{2} \times 8$ A1 for 209-210 M1 for $216 \div 360$ A1 for 9 M1 for $\sqrt{ }\left(15^{2}-" 9 " 2\right)$, where " 9 " <15 A1 cao

