2007_06_6H

Paper 5525_	06			
No	Working	Answer	Mark	Notes
1		273	2	M1 for 728 ÷ 8 or 728 ÷ "3+5" or 91
				A1 cao SC B1 for 455 or 273:455
2		3n - 1	2	B2 for $3n - 1$ oe (B1 for $3n + k$ where $k \neq -1$ but k could be 0)
3	3 24 3.7 46.9(53) 4 60 3.8 51.0(72) 3.1 26.6(91) 3.9 55.4(19) 3.2 29.5(68) 3.21 29.8(66) 3.3 32.6(37) 3.22 30.1(66) 3.4 35.9(04) 3.23 30.4(68) 3.5 39.3(75) 3.24 30.7(72) 3.6 43.0(56) 3.25 31.0(78) or	3.2	4	B2 for trial between 3.2 and 3.3 inclusive (B1 for trial between 3 and 4 inclusive) B1 for different trial between 3.21 and 3.25 inclusive B1 (dep on at least one previous B1) cao for 3.2 NB: embedded answers: -B1; award Bs for evaluations rounded or truncated to at least 1 dp or for 31
4	2 is the only even prime number and the product of 2 odd numbers is odd	Yes	2	B2 for 'yes' and '2 is the only even prime number and the product of two odd numbers is odd' oe (B1 for 'yes' and either '2 is the only even prime number' oe or 'the product of two odd numbers is odd' oe)
5	$45^{2} + 34^{2} =$ 2025 + 1156 = 3181 $\sqrt{3181} = 56.4$	56	4	M1 for $45^2 + 34^2$ M1 for $\sqrt{2025 + 1156}$ A1 for 56.4 B1 for rounding their diagonal to the nearest integer (dep on evidence from decimal) NB 56 with no incorrect working as the final answer gets full marks. NB Scale drawings result in 0 marks.

Paper 5525_	Paper 5525_06					
No	Working	Answer	Mark	Notes		
6	$2000 \times (1.055)^3$ Interest = 2348.48 - 2000 =	£348.48	3	M1 for 5.5/100 × 2000 (oe) or 330 or 16.5/100×2000 or 2330 or 110 or 2110 M1 (dep) for 5.5/100 × (2000 + "110" + "116.05") or 122.4 seen A1 cao (accept only 348.48 or 348.49) OR M2 for 2000 × $(1.055)^3$ or 2348.48() or 2348.49 seen (M1 for 2000 × $(1.055)^n$, $n \neq 3$) A1 for 348.48 or 348.49 [SC: B2 for 2348.48 - 2348.49]		
7 (a)		Line	2	B2 line fully within tramlines, crossing AB and CD (B1 a straight line which crosses AB within the tramline, and also crosses CD) NB: Accept dotted or dashed lines, but not curves; accept freehand if considered to be straight. SC B1 for the perpendicular bisector of <i>AB</i> reaching halfway or more from <i>AB</i>		
(b)		Region		B2 correct arc ±2mm and shaded within. Allow dotty or continous arc. (B1 inaccurate arc and shaded or accurate arc unshaded)		
8	$65 \times 12 = 780$ $75 \times 22 = 1650$ $85 \times 23 = 1955$ $95 \times 24 = 2280$ $105 \times 19 = 1995$ 8660/100 =	86.6	4	M1 for use of fx with x consistent within intervals (including end points). Allow one slip even if outside interval M1 (dep) for use of midpoints M1 (dep on 1 st M1) for use of $\sum fx/100$ or $\sum fx/\sum f$ A1 86.6		

Paper	Paper 5525_06					
N	0	Working	Answer	Mark	Notes	
9		Distance \div time: 1400 \div 2 h 20 min 20 mins is $\frac{1}{3}$ hour 1400 \times 3 \div 7 =	600 kph	3	B1 20 mins as $\frac{1}{3}$ hour or as 0.33hour M1 for distance \div time eg 1400 \div "2h 20 min" A1 cao OR B1 2 hour 20min = 140 (min) M1 Speed = $\frac{1400}{140}$ = (10 km per minute) A1 cao	
10	(a)	(x+18)+2x+(2x+7)=180	Equation	2	B2 for $(x+18)+2x+(2x+7)=180$ oe (B1 for $(x+18)+2x+(2x+7)$)	
	(b)	5x+25 = 180 5x = 155	31	2	M1 for simplifying to at least $5x+25=180$ or 360 (may be earned in (a)) A1 for $x=31$	
11	(a)	(-14) -4 (0) 4 14	-4, 4, 14	2	B2 for all 3 values correct (B1 for 1 or 2 values correct)	
	(b)		curve	2	 B1 for all 5 points plotted correctly ± ½ square (ft from table if at least B1 awarded in (a)) B1 (indep) ft for any smooth curve through their points 	

Paper 5525_0	Paper 5525_06					
No	Working	Answer	Mark	Notes		
12 (a)	$8 imes rac{10}{4}$	20	2	M1 $\frac{10}{4}$ or $\frac{4}{10}$ or 0.4 or 2.5 oe seen		
				A1 cao NB ratios get M0 unless of the form 1: <i>n</i> OR		
				M1 $\frac{8}{4}, \frac{4}{8}$ oe seen		
(b)	$15 \times \frac{4}{10}$	6	2	A1 cao M1 $15 \times \frac{4}{10}$ oe		
13 (a)	$9.9 \times 10^8 - 6.0 \times 10^7$	$\pm 9.3 \times 10^{8}$	2	A1 cao M1 for $99 \times 10^7 - 6.0 \times 10^7$ or $9.9 \times 10^8 - 0.60 \times 10^8$ or correct		
15 (a)	9.9~10 = 0.0~10	±9.5×10	L	conversion of either to an ordinary number or 930000000 or 9.3×10^n where <i>n</i> is any positive integer A1 cao		
(b)	$\frac{6.0 - 4.5}{4.5} \times 100 = \frac{1.5}{4.5} \times 100 =$	33.3%	3	M2 $\frac{6.0 \times 10^7 - 4.5 \times 10^7}{4.5 \times 10^7} \times 100$ oe		
	or $\frac{4.5}{4.5 \times 10^7 - 4.5 \times 10^7}{4.5 \times 10^7} \times 100$			(M1 for $\frac{6.0 \times 10^7 - 4.5 \times 10^7}{4.5 \times 10^7}$ or $\frac{6.0 \times 10^7 - 4.5 \times 10^7}{6.0 \times 10^7} \times 100$ oe		
	4.3×10			A1 33.3 – 33.4 OR		
				M2 $6.0 \times 10^{7} \times 100$ -100 or 33.3%		
				4.5×10^{7} (M1 <u>6.0×10⁷</u> × 100 or 133.3%)		
				$\frac{0.0\times10}{4.5\times10^7}$ × 100 of 155.570)		
				A1 33.3-33.4		
				NB Accept any of the above expressions without any reference to 10^7 .		

Paper 5525	Paper 5525_06					
No	Working	Answer	Mark	Notes		
14	LCM $(40,24) = 120$ Bread buns $120 \div 40$ Burgers $120 \div 24$ OR Bread buns: 40 is $2 \times 2 \times 2$ (×5) Burgers: 24 is $2 \times 2 \times 2$ (×3)	Bread Buns 3 Burgers 5	3	M1 attempt to find LCM by eg lists of multiples, or summing of 40s and summing of 24s, with at least 3 numbers in each list A1 identify 120 as LCM A1 cao (both) OR M1 expansion of either number into its prime factors in a factor tree or 8×5 or 8×3 A1 both expansions correct A1 cao (both) SC B2 if answers given the wrong way around		
15	$\sin 32 = \underline{AB}$ 12 $AB = 12 \times \sin 32$ $AB = 6.35903$	6.36	3	$M1 \sin 32 = \underline{AB} \text{ (accept Sin } \underline{AB})$ $12 \qquad 12$ $M1 \sin 32 = \underline{AB} \text{ (accept Sin } \underline{AB})$ $12 \qquad 12$ $M1 12 \times \sin 32 \text{ or } 12 \times 0.5299$ $A1 \text{ accept } 6.359 - 6.360$ $SC \text{ Gradians } 5.78(1)$ $Radians \ 6.62$ $Get \ M1M1A0 OR$ $Use \ of Sine Rule$ $\frac{\sin 32}{AB} = \frac{\sin 90}{12} \qquad \text{or} \qquad \frac{AB}{\sin 32} = \frac{12}{\sin 90} \qquad M1$ $AB = \frac{12 \times \sin 32}{\sin 90} \qquad M1$ $AB = 6.359 - 6.36 \qquad A1$ $SC \ Gradians \ 5.85()$ $Radians \ 7.40()$ $M1M1A0$		

Paper 5525	_06			
No	Working	Answer	Mark	Notes
16	$8 \times 41 = 3282 \times 29 = 58328 - 58 = 270270 \div 6 = 45$	45	3	M1 for either 8 × 41 (=328) or 2 × 29 (=58) M1 (dep) "328" – "58" (=270) A1 cao NB 328 and /or 58 on the answer line gets M1 (implied); 270 on the answer line gets M2 (implied)
17 (a)	$x^2 - 4x + 3x - 12 = x^2 - x - 12$	x ² -x-12	2	M1 for exactly 4 terms correct ignoring signs $(x^2, 4x, 3x, 12)$ or 3 out of 4 terms with correct signs $(x^2, -4x, +3x, -12)$ A1 cao
(b)	$6x^2 - 8x + 15x - 20 = 6x^2 + 7x - 20$	$6x^2 + 7x - 20$	2	M1 for exactly 4 terms correct ignoring signs $(6x^2, 8x, 15x, 20)$ or 3 out of 4 terms with correct signs $(6x^2, -8x, +15x, -20)$ A1 cao
(c)	(x+2)(x+5)	(x+2)(x+5)	2	B2 cao (B1 for exactly one of $(x + 2)$, $(x + 5)$)
(d)		$12p^8q^3$	2	B2 cao (B1 for any 2 out of 3 terms correct in a product or 3 terms correct in a sum or part product)
(e)	6 = 15 + 4(q-5) 6 = 15 + 4q - 20 11 = 4q	$2\frac{3}{4}$	3	M1 for correct substitution of p and t. M1 for correct expansion of $4(q-t)$ oe (eg $4q-20, 4q-4t$) A1 11/4 or 2 ³ / ₄ or 2.75 OR M1 for correct substitution of p and t. M1 for $\frac{p-3t}{4} = q-t$ oe A1 11/4 or 2 ³ / ₄ or 2.75

Paper 5525_	Paper 5525_06					
No	Working	Answer	Mark	Notes		
18 (a)	T=kx; 150=6k; k=25	T=25x	3	M1 for $T=kx$, k algebraic M1 subs $T=150$ and $x=6$ into $T = kx^n$ $(n \neq 0)$ A1 for $T=25x$ oe SC B1 $T \propto 25x$ oe		
(b)	$T = 25 \times 15 =$	375	1	B1 ft on k , $k \neq 1$		
(c)	$600 = 25x; x = 600 \div 25 =$	24	1	B1 ft on k , $k \neq 1$		
19	$120 \times 50 = 10.5263$ 570 $250 \times 50 = 21.9298$ 570 $200 \times 50 = 17.5438$ 570 $r(r+1) + 4(2r-2) = (2r-2)(r+1)$	10 22 18	3	$\frac{120}{120 + 250 + 200} \times 50 \text{ or one of}$ 10.5(263) 21.9(298), 17.5(438) OR 570 ÷ 50 = 11.4 and one of 120 ÷ 11.4 =10.526), 270 ÷ 11.4 (=21.9298), 200 ÷ 11.4 (=17.5438) A1 for 10.5(263), 21.9(298), 17.5(438) or 11, 22, 18 B1 correction to add to 50: 10, 22, 18 or 11, 22, 17		
20	x(x+1) + 4(2x-3) = (2x-3)(x+1) x2 + x + 8x - 12 = 2x2 + 2x - 3x - 3 x2 - 10x + 9 = 0 (x - 9)(x - 1) = 0	x = 1,9	5	M1 for multiplying through by common denominator $(2x-3)(x+1)$ M1 (dep)for either $x2 + x + 8x - 12$ or $2x2 + 2x - 3x - 3$ oe A1 for correct quadratic (= 0) M1 for a correct method to solve 3 term quadratic A1 cao for both solutions		
21	$AB2 = 82 + 92 - 2 \times 8 \times 9 \times \cos 40$ $AB2 = 64 + 81 - 144 \times \cos 40$ $AB2 = 145 - 144 \times 0.766$ AB2 = 145 - 110.31 = 34.6896 $AB = \sqrt{34.6796} = 5.8897877$	5.89	3	M1 Subs in Cos Rule: $82 + 92 - 2 \times 8 \times 9 \times \cos 40$ M1 correct order of evaluation of $82 + 92 - 2 \times 8 \times 9 \times \cos 40$ A1 cao 5.88 - 5.89 SC: Award B2 for one of AB2 = 241.03 or AB = 15.525 (radians) AB2 = 28.50 or AB = 5.33 (gradians)		

Paper	Paper 5525_06					
N	No	Working	Answer	Mark	Notes	
22	(a)		24 30	2	B1 24 cao B1 30 cao	
	(b)	Column $60 \le w < 75$ at 10 Column $75 \le w < 95$ at 4	10 4	2	B1 10 and correct width (tol $\pm \frac{1}{2}$ small square)	
					B1 4 and correct width (tol $\pm \frac{1}{2}$ small square)	
23	(a)		100.5	1	B1 cao	
	(b)		10.515	1	B1 cao	
	(c)	$\frac{100.5}{10.515}$	9.5577746	2	M1 for greatest distance divided by least time Where $100 <$ greatest distance ≤ 100.5 , $10.51 \le$ least time < 10.52	
					A1 for 9.555 – 9.56	
	(d)	$\frac{99.5}{10.525}$	9.45368	2	M1 for least distance divided by greatest time Where $99.5 \le \text{least}$ distance $< 100, 10.52 < \text{greatest}$ time ≤ 10.53 A1 for $9.45 - 9.455$	

Paper 5525_	Paper 5525_06						
No	Working	Answer	Mark	Notes			
24	$\frac{4 \times 4 \times 3}{7} + \frac{3}{7} \times \frac{3}{7} \times \frac{4}{7} = \frac{84}{343}$ But there are three ways this can be achieved: BBG, BGB, GBB So the probability is $\frac{84}{343} \times 3$ OR $1 - \frac{64}{343} - \frac{27}{343}$ NB: $84/343 = 0.244897$; $252/343 = 0.73469$ $\frac{4}{7} = 0.57(142)$, $\frac{3}{7} = 0.42(857)$	<u>252</u> 343	3	M1 for $\frac{4}{7} \times \frac{4}{7} \times \frac{3}{7}$ or $\frac{3}{7} \times \frac{3}{7} \times \frac{4}{7}$ oe or $\left(\frac{4}{7}\right)^3$ oe or $\left(\frac{3}{7}\right)^3$ oe or $\frac{91}{343}$ or 0.10(49) or 0.13(99) M1 (indep) for identification of all 6 outcomes (M2 for $1 - \left[\left(\frac{4}{7}\right)^3 + \left(\frac{3}{7}\right)^3\right]$) oe $A1\frac{252}{343}, \frac{36}{49}, 0.73(469)$ oe			
25 (a)	$\frac{1}{3} \times \pi \times 5^2 \times 8 = \pi \times 25 \times 8 \div 3 =$ 209.4395	209–210	2	M1 for $\frac{1}{3} \times \pi \times 5^2 \times 8$ A1 for 209–210			
(b)	Base radius = $\frac{216}{360} \times 15 = 9$ Height = $\sqrt{(15^2 - 9^2)} =$	12	4	M1 for 216 ÷ 360 A1 for 9 M1 for $\sqrt{(15^2 - "9"^2)}$, where "9" < 15 A1 cao			