2007_06_P-5

Paper 552	5_05			
No	Working	Answer	Mark	Notes
1 (a)	1 - (0.2 + 0.3 + 0.1)	0.4	2	M1 for $1 - (0.2 + 0.3 + 0.1)$ A1 for 0.4 oe, accept $\frac{0.4}{1}$
(b)	0.2×200	40	2	M1 for 0.2×200 A1 cao NB $\frac{40}{200}$ is M1 A0, 40 out of 200 is M1 A1
2	650 - 430 = 220 1 choc ice costs 110p $650 - 5 \times 110 = 100p$	50	3	M1 for $650 - 430$ or 220 or 110 oe seen M1 for $650 - 5 \times \frac{'220'}{2}$ or $430 - 3 \times \frac{'220'}{2}$ oe A1 for $50p$ or £0.50 or £0.5 Alternative scheme 2x + 5y = 650 2x + 3y = 430 oe M1 for subtracting two simultaneous equations to eliminate x (lollies)(2 or 3 terms correct) M1 for $650 - 5 \times 'y'$ or $430 - 3 \times 'y'$ oe A1 for $50p$ or £0.50 or £0.5 Alternative scheme M1 for $3 \times (2x + 5y = 650)$ evaluated and $5 \times (2x + 3y = 430)$ evaluated oe (5 or 6 terms correct) M1 for subtraction of equations to eliminate y (choc ices)(2 or 3 terms correct ft) A1 for 50p or £0.50 or £0.5

Paper 5525_	Paper 5525_05						
No	Working	Answer	Mark	Notes			
3		question + response boxes oe	2	 1st aspect: One question (eg 'how long does it take you to travel to school?' or 'What time did you leave home to get to school?'); ignore other questions. 2nd aspect: Response list (at least two), not overlapping. 3rd aspect: Some mention of units (eg minutes) in either question or responses B2 for all three aspects, or B1 for just one aspects. 			
4	2 $[(3\times1) + (4\times1)] +$ (3×6) + (1×6) + (2×6) + (4×6) + (1×6) + (5×6)	110 cm ²	4	M1 for attempt to find the area of one face M1 for at least 6 faces with intention to add A1 cao B1 (indep) for cm ² (with or without numerical answer)			
5	$\left(\frac{-6+4}{2}\right), \left(\frac{5+3}{2}\right)$	(-1, 4)	2	B2 cao [B1 for (-1, <i>a</i>) or (b,4) or (4,-1)]			
6		Box plot	2	 3 aspects: 1st aspect – vertical line for median 2nd aspect – box using correct quartiles 3rd aspect – whiskers (could be single line) drawn with correct end points B2 for fully correct box plot (B1 for 1 aspect) 			
7			2	M1 for a relevant pair of intersecting arcs A1 for line drawn within guidelines, at least 3cm in length, accept broken line [SC: B1 for line drawn within guidelines if M0]			

Pape	Paper 5525_05						
	No	Working	Answer	Mark	Notes		
8	(a)	e.g. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2×3×3×7	2	 M1 for a systematic method of at least 2 correct divisions by a prime number oe factor trees; can be implied by digits 2, 3, 3, 7 on answer line. A1 for 2 × 3² ×7 or 2 × 3 × 3 ×7 		
	(b)	$2 \times 3 \times 7$	42	2	B2 cao		
					(B1 for 6, 14, 21 or $2 \times 3 \times 7$)		
9	(a)		-1,0,1,2,3	2	B2 cao (-1 each error or omission)		
	(b)(i)		$x \ge \frac{7}{2}$	3	M1 for $2x \ge 7$, condone use of = sign or wrong equality A1 for $x \ge \frac{7}{2}$ oe as final answer		
	(ii)		4		SC:B1 for 3.5 or $\frac{7}{2}$ seen if M0 B1 ft from $x \ge \frac{7}{2}$ or $x > \frac{7}{2}$		
10	(a)(i)		7 ⁵	3	B1 cao		
	(ii)		74		B2 cao (B1 for sight of 7 ⁵ or 7 ²⁺³ or 7 × 7 ³ or 7 ¹ × 7 ³ or 7 ² × 7 ² or 7^{2+3-1})		
	(b)		$\frac{1}{2}$	1	B1 for $\frac{1}{2}$ or 0.5 or 2 ⁻¹		

Paper 5525	Paper 5525_05						
No	Working	Answer	Mark	Notes			
11 (a)	5n = m + 21	$n = \frac{m+21}{5}$	2	M1 for $5n = m + 21$ or for attempt to divide three terms by 5 A1 $n = \frac{m+21}{5}$ oe			
(b)	4p-8q = 3p+2 p-8q = 2 p = 8q+2	<i>p</i> = 8 <i>q</i> + 2	3	M1 for $4p - aq$ or $\frac{3}{4}p + b$ where <i>a</i> is an integer and <i>b</i> is a number M1 (dep) for taking one term correctly to LHS or RHS of expression A1 $p = 8q + 2$ oe			
12		$y = \frac{1}{2}x + 3$	2	B2 for $y = \frac{1}{2}x + 3$ oe (B1 for $y = \frac{1}{2}x + c$, $c \neq 7$ or $y = mx + 3$ oe or $\frac{1}{2}x + 3$ or $M = \frac{1}{2}x + 3$)			
13	$\frac{8}{3} \times \frac{5}{4} = \frac{8 \times 5}{3 \times 4} = \frac{40}{12}$	$3\frac{1}{3}$	3	 B1 for ⁸/₃ oe or ⁵/₄ oe M1 (dep on B1) for multiplying numerator and denominator of "⁸/₃" and "⁵/₄" A1 for 3¹/₃ oe mixed number or ¹⁰/₃ OR B1 for 1.25 and 2.67 or 2.66() M1(dep on B1) for correct method of multiplication A1 for 3.3 			

Paper 5525	Paper 5525_05						
No	Working	Answer	Mark	Notes			
14	4x + 2y = 8 $4x - 10y = 20$ $12y = -12$ $y = -1$ $4x + 2(-1) = 8$ $x = 2.5$	x = 2.5 $y = -1$	3	 M1 for correct process to eliminate either x or y (condone one arithmetical error) M1 (dep) for substituting found value into either equation A1 for x = 2.5, y = -1 [SC: B1 for x = 2.5 or y = -1 if M0] 			
15	Interior angle of hexagon = $180 - (360 \div 6) = 120$ 360 - (90 + 120)	150	4	Alternative 1 M1 for $360 \div 6$ A1 for 60 M1 (dep on M1) for " 60 " + 90 A1 cao Alternative 2 M1 for $360 \div 6$ A1 for 60 M1(dep on M1) for $360 - (2 \times "60" + 90)$ A1 cao Alternative 3 M1 for $(6 - 2) \times 180 \div 6$ A1 for 120 M1(dep on M1) for $360 - (90 + "120")$ A1 cao			

Раре	Paper 5525_05						
	No	Working	Answer	Mark	Notes		
16	(a)		(16), 50, 82, 96, 100	1	B1 cao		
	(b)	Cumulative freq. diag. curve/ segments	Cum. freq graph	2	 B1 ft for 4 or 5 points plotted correctly ± 1 full (2mm) square depending on sensible table (condone 1 addition error) B1 (dep) for points joined by curve or line segments provided no gradient is negative - ignore any part of graph outside range of their points. (SC:B1 if 4 or 5 points plotted not at end but consistent within 		
	(c)	100 – 42	58	2	 each interval and joined) M1 (ft dep on graph being cf) for reading from graph at 18 or 19, can be implied by answer in range 40 to 46 A1 for answer in range 56 to 60 or ft for 100 - '42' ±1 full (2mm) square 		
17	(a)		0.6 and	2	B1 for 0.6 on LH branch		
			0.7,0.3,0.7		B1 for 0.7, 0.3 and 0.7 on RH branches		
	(b)	0.4×0.3	0.12	2	M1 for 0.4×0.3 A1 0.12 oe		
	(c)	$0.4 \times 0.7 + 0.6 \times 0.3$	0.46	3	M1 for ' 0.4×0.7 ' or ' 0.6×0.3 ' M1 for addition of two products from correct branches A1 0.46 oe Alternative M2 for an attempt to evaluate 1-($0.3 \times 0.4 + 0.6 \times 0.7$ ') A1 cao		
18		x = 0.4545 so $100x = 45.4545$ 99x = 45 $x = \frac{45}{99} = \frac{15}{33}$	proof	3	M1 for $100x = 45.45 \dots$ or $10000x = 4545.45 \dots$ M1 (dep) for subtraction of both sides A1 for $\frac{15}{33}$ from correct proof		

Раре	Paper 5525_05						
I	No	Working	Answer	Mark	Notes		
19		$\left(\sqrt{3}\right)^2 + \sqrt{3}\sqrt{2} - \sqrt{3}\sqrt{2} - \left(\sqrt{2}\right)^2$ $= 3 - 2$	1	2	B2 cao (B1 for $\sqrt{3}\sqrt{3} + \sqrt{3}\sqrt{2} - \sqrt{3}\sqrt{2} - \sqrt{2}\sqrt{2}$ oe, $\sqrt{3}\sqrt{3} - \sqrt{2}\sqrt{2}$ oe, or for 2,3, $\sqrt{4}\sqrt{6}\sqrt{9}$ seen)		
20	(a)	$\frac{96}{24} \text{ or } 4$ $\sqrt{4} \text{ or } 2$	8	3	M1 for $\frac{96}{24}$ or $\frac{24}{96}$ or 4 or $\frac{1}{4}$ oe M1 for $\sqrt{\frac{96}{24}}$ or $\sqrt{\frac{24}{96}}$ or $\sqrt{'4'}$ or $\frac{1}{\sqrt{'4'}}$ or 2 or $\frac{1}{2}$ oe A1 cao		
	(b)	12×2^{3}	96	2	M1 for '2' ³ or 8 A1 cao		
21	(a)	$x \times 3 - x \times 2x^2$	$3x-2x^3$	2	B2 cao (B1 for a two term expression with either $3x$ or $2x^3$)		
	(b)		4x(3y+x)	2	M1 for taking out a factor of x , $2x$, 2 , 4 or $4x$ A1 cao		
	(c)	$\frac{5a}{b^2}$	$\frac{5a}{b^2}$	2	B2 for $\frac{5a}{b^2}$ or $5ab^{-2}(\operatorname{accept} \frac{5a}{1b^2})$ (B1 for either dealing with the numbers or dealing with the powers of <i>a</i>)		
	(d)	$\frac{x-3}{(x-3)(x+3)}$	$\frac{1}{x+3}$	2	M1 for $(x-3)(x+3)$ A1 cao		
22	(a)		a + b	1	B1 $\mathbf{a} + \mathbf{b}$ oe		
	(b)	$ED = \mathbf{a}$ $DX = -2\mathbf{b} + 2AC = 2\mathbf{a}$ (So, $DX = 2ED$)	2 a	3	M1 for $(DX=) DA + AX$ A1 for $(DX=) -2b + 2$ (" $a + b$ ") A1 2 a from fully correct proof		

Paper 5525	Paper 5525_05						
No	Working	Answer	Mark	Notes			
23	$\pi (2x)^{2} h = \frac{4}{3} \pi (3x)^{3}$ $h = \frac{\frac{4}{3} \pi (3x)^{3}}{\pi (2x)^{2}}$	9 <i>x</i>	3	M1 for $\pi (2x)^2 h = \frac{4}{3}\pi (3x)^3$ (condone absence of brackets) M1 (dep) for valid algebra that gets to $h = ax$ (condone one error in powers of numerical constants) A1 cao			
24 (i) (ii)	$n^{2} + (n+1)^{2} = 2(n^{2} + n) + 1$	$2n^{2} + 2n + 1$ $2(n^{2} + n) \text{ is}$ always even so $2(n^{2} + n) + 1$ is always odd	4	M1 for at least 3 terms correct from $n^2 + n + n + 1$ A1 for $2n^2 + 2n + 1$ oe M1 for recognizing $2n^2$ is always even A1ft complete proof for their quadratic <i>Alternative method</i> M1 for recognizing that if n^2 is odd then $(n + 1)^2$ is even or vice versa A1 for complete proof			
25		42 318	2	B1 for answer in range 36 – 48 B1 for answer in range 312 – 324			
26 (a) (b)	$(x-3)^2 - 3^2 + 15$	p = 3, q = 6 Sketch	2	B2 for $p = 3$ and $q = 6$ (B1 for $p = 3$ OR $q = 6$) SC: award B2 for $(x-3)^2 + 6$ if p and q are not identified B1 for U shaped curve B1 ft for TP in first quadrant (ft if TP not in first quadrant)			

Рар	Paper 5525_05						
	No	Working	Answer	Mark	Notes		
27		Graph translated 2 units upwards through points (-4, 2), (-2, 4), (0,2) and (3,5)	Sketch	2	M1 for a vertical translation A1 curve through points (-4, 2), (-2, 4), (0,2) and (3,5) $\pm \frac{1}{2}$ square		
		Graph reflected in <i>x</i> -axis through points $(-4,0), (-2, -2), (0, 0)$ and $(3, -3)$	Sketch	2	M1 for reflection in <i>x</i> -axis or <i>y</i> -axis A1 curve through points (-4,0), (-2, -2), (0, 0) and $(3, -3) \pm \frac{1}{2}$ square		