Paper 5525_05				
No	Working	Answer	Mark	Notes
(a) (b)	$1-(0.2+0.3+0.1)$ 0.2×200	0.4 40	2 2	M1 for $1-(0.2+0.3+0.1)$ A1 for 0.4 oe, accept $\frac{0.4}{1}$ M1 for 0.2×200 A1 cao NB $\frac{40}{200}$ is M1 A0, 40 out of 200 is M1 A1
2	$650-430=220$ 1 choc ice costs 110 p $650-5 \times 110=100 \mathrm{p}$	50	3	M1 for $650-430$ or 220 or 110 oe seen M1 for $650-5 \times \frac{{ }^{\prime 2} 20^{\prime}}{2}$ or $430-3 \times \frac{{ }^{\prime 220 '}}{2}$ oe A1 for 50 p or $£ 0.50$ or $£ 0.5$ Alternative scheme $\begin{aligned} & 2 x+5 y=650 \\ & 2 x+3 y=430 \text { oe } \end{aligned}$ M1 for subtracting two simultaneous equations to eliminate x (lollies)(2 or 3 terms correct) M1 for $650-5 \times{ }^{\prime} y^{\prime}$ or $430-3 \times$ ' y ' oe A1 for 50 p or $£ 0.50$ or $£ 0.5$ Alternative scheme M1 for $3 \times(2 x+5 y=650)$ evaluated and $5 \times(2 x+3 y=430)$ evaluated oe (5 or 6 terms correct) M1 for subtraction of equations to eliminate y (choc ices)(2 or 3 terms correct ft) A1 for 50 p or $£ 0.50$ or $£ 0.5$

Paper 5525_05				
No	Working	Answer	Mark	Notes
3		question + response boxes oe	2	$1^{\text {st }}$ aspect: One question (eg 'how long does it take you to travel to school?' or 'What time did you leave home to get to school?'); ignore other questions. $2^{\text {nd }}$ aspect: Response list (at least two), not overlapping. $3^{\text {rd }}$ aspect: Some mention of units (eg minutes) in either question or responses B2 for all three aspects, or B1 for just one aspects.
4	$\begin{aligned} & 2[(3 \times 1)+(4 \times 1)]+ \\ & (3 \times 6)+(1 \times 6)+(2 \times 6)+(4 \times 6)+(1 \times 6) \\ & +(5 \times 6) \end{aligned}$	$\begin{aligned} & 110 \\ & \mathrm{~cm}^{2} \end{aligned}$	4	M1 for attempt to find the area of one face M1 for at least 6 faces with intention to add A1 cao B1 (indep) for cm^{2} (with or without numerical answer)
5	$\left(\frac{-6+4}{2}\right),\left(\frac{5+3}{2}\right)$	$(-1,4)$	2	$\begin{aligned} & \text { B2 cao } \\ & {[\text { B1 for }(-1, a) \text { or }(\mathrm{b}, 4) \text { or }(4,-1)]} \end{aligned}$
6		Box plot	2	3 aspects: $1^{\text {st }}$ aspect - vertical line for median $2^{\text {nd }}$ aspect - box using correct quartiles $3^{\text {rd }}$ aspect - whiskers (could be single line) drawn with correct end points B2 for fully correct box plot (B1 for 1 aspect)
7			2	M1 for a relevant pair of intersecting arcs A1 for line drawn within guidelines, at least 3 cm in length, accept broken line [SC: B1 for line drawn within guidelines if M0]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525_05} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
\[
8
\] \\
(a) \\
(b)
\end{tabular} \& e.g.
\[
2 \times 3 \times 7
\] \& \[
2 \times 3 \times 3 \times 7
\]
\[
42
\] \& 2

2 \& | M1 for a systematic method of at least 2 correct divisions by a prime number oe factor trees; can be implied by digits 2 , 3, 3, 7 on answer line. |
| :--- |
| A1 for $2 \times 3^{2} \times 7$ or $2 \times 3 \times 3 \times 7$ |
| B2 cao |
| (B1 for $6,14,21$ or $2 \times 3 \times 7$) | \\

\hline | (a) |
| :--- |
| (b)(i) |
| (ii) | \& \& \[

$$
\begin{gathered}
-1,0,1,2,3 \\
x \geq \frac{7}{2}
\end{gathered}
$$
\]

$$
4
$$ \& \[

$$
\begin{aligned}
& 2 \\
& 3
\end{aligned}
$$

\] \& | B2 cao (-1 each error or omission) |
| :--- |
| M1 for $2 x \geq 7$, condone use of = sign or wrong equality |
| A1 for $x \geq \frac{7}{2}$ oe as final answer |
| SC:B1 for 3.5 or $\frac{7}{2}$ seen if M0 |
| B1 ft from $x \geq " \frac{7}{2} "$ or $x>" \frac{7}{2} "$ | \\

\hline | $10 \quad \text { (a)(i) }$ |
| :--- |
| (ii) |
| (b) | \& \& \[

$$
\begin{aligned}
& 7^{5} \\
& 7^{4} \\
& \frac{1}{2}
\end{aligned}
$$
\] \& 3

1 \& | B1 cao |
| :--- |
| B2 cao |
| (B1 for sight of 7^{5} or 7^{2+3} or 7×7^{3} or $7^{1} \times 7^{3}$ or $7^{2} \times 7^{2}$ or 7^{2+3-1}) |
| B1 for $\frac{1}{2}$ or 0.5 or 2^{-1} | \\

\hline
\end{tabular}

Paper 5525_05				
No	Working	Answer	Mark	Notes
(a) (b)	$5 n=m+21$ $\begin{aligned} & 4 p-8 q=3 p+2 \\ & p-8 q=2 \\ & p=8 q+2 \end{aligned}$	$n=\frac{m+21}{5}$ $p=8 q+2$	2 3	M1 for $5 n=m+21$ or for attempt to divide three terms by 5 A1 $n=\frac{m+21}{5}$ oe M1 for $4 p-a q$ or $\frac{3}{4} p+b$ where a is an integer and b is a number M1 (dep) for taking one term correctly to LHS or RHS of expression A1 $p=8 q+2$ oe
12		$y=\frac{1}{2} x+3$	2	$\begin{array}{\|l} \hline \text { B2 for } y=1 / 2 x+3 \text { oe } \\ (\mathrm{B} 1 \text { for } y=1 / 2 x+\mathrm{c}, \mathrm{c} \neq 7 \text { or } y=m x+3 \text { oe or } 1 / 2 x+3 \text { or } \\ \mathrm{M}=1 / 2 x+3) \\ \hline \end{array}$
13	$\frac{8}{3} \times \frac{5}{4}=\frac{8 \times 5}{3 \times 4}=\frac{40}{12}$	$3 \frac{1}{3}$	3	B1 for $\frac{8}{3}$ oe or $\frac{5}{4}$ oe M1 (dep on B1) for multiplying numerator and denominator of " $\frac{8}{3}$ " and " $\frac{5}{4}$ " A1 for $3 \frac{1}{3}$ oe mixed number or $\frac{10}{3}$ OR B1 for 1.25 and 2.67 or $2.66(\ldots)$ M1 (dep on B1) for correct method of multiplication A1 for $3 . \dot{3}$

Paper 5525_05				
No	Working	Answer	Mark	Notes
14	$\begin{array}{r} 4 x+2 y=8 \\ 4 x-10 y=20 \\ \hline 12 y=-12 \\ y=-1 \\ 4 x+2(-1)=8 \\ x=2.5 \end{array}$	$\begin{aligned} & x=2.5 \\ & y=-1 \end{aligned}$	3	M1 for correct process to eliminate either x or y (condone one arithmetical error) M1 (dep) for substituting found value into either equation A1 for $x=2.5, y=-1$ [SC: B1 for $x=2.5$ or $y=-1$ if M0]
15	Interior angle of hexagon $=$ $\begin{aligned} & 180-(360 \div 6)=120 \\ & 360-(90+120) \end{aligned}$	150	4	Alternative 1 M1 for $360 \div 6$ A1 for 60 M1 (dep on M1) for " 60 " +90 A1 cao Alternative 2 M1 for $360 \div 6$ A1 for 60 M1 (dep on M1) for $360-(2 \times$ " 60 " +90$)$ A1 cao Alternative 3 M1 for $(6-2) \times 180 \div 6$ A1 for 120 M1 (dep on M1) for $360-(90+$ " 120 " $)$ A1 cao

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525_05} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& Cumulative freq. diag. curve/ segments
\[
100-42
\] \& \begin{tabular}{l}
\[
\begin{gathered}
(16), 50,82,96 \\
100
\end{gathered}
\] \\
Cum. freq graph
\end{tabular} \& 1
2

2 \& | B1 cao |
| :--- |
| B1 ft for 4 or 5 points plotted correctly ± 1 full (2 mm) square depending on sensible table (condone 1 addition error) |
| B1 (dep) for points joined by curve or line segments provided no gradient is negative - ignore any part of graph outside range of their points. |
| (SC:B1 if 4 or 5 points plotted not at end but consistent within each interval and joined) |
| M1 (ft dep on graph being cf) for reading from graph at 18 or 19 , can be implied by answer in range 40 to 46 |
| A1 for answer in range 56 to 60 or ft for $100-‘ 42^{\prime} \pm 1$ full (2 mm) square | \\

\hline | (a) |
| :--- |
| (b) |
| (c) | \& \[

$$
\begin{aligned}
& 0.4 \times 0.3 \\
& 0.4 \times 0.7+0.6 \times 0.3
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
0.6 \text { and } \\
0.7,0.3,0.7 \\
0.12 \\
\\
0.46
\end{gathered}
$$
\] \& 2

2

3 \& | B1 for 0.6 on LH branch |
| :--- |
| B1 for $0.7,0.3$ and 0.7 on RH branches |
| M1 for 0.4×0.3 |
| A1 0.12 oe |
| M1 for ' 0.4×0.7 ' or ${ }^{\prime} 0.6 \times 0.3^{\prime}$ |
| M1 for addition of two products from correct branches |
| A1 0.46 oe |
| Alternative |
| M2 for an attempt to evaluate $1-\left(0.3 \times 0.4+{ }^{\prime} 0.6 \times 0.7^{\prime}\right)$ |
| A1 cao | \\

\hline 18 \& \[
$$
\begin{aligned}
x & =0.4545 \ldots \\
\text { so } 100 x & =45.4545 \ldots \\
99 x & =45 \\
x & =\frac{45}{99}=\frac{15}{33}
\end{aligned}
$$

\] \& proof \& 3 \& | M1 for $100 x=45.45 \ldots$ or $10000 x=4545.45 \ldots$ M1 (dep) for subtraction of both sides |
| :--- |
| A1 for $\frac{15}{33}$ from correct proof | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525_05} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline 19 \& \[
\begin{aligned}
\& (\sqrt{3})^{2}+\sqrt{3} \sqrt{2}-\sqrt{3} \sqrt{2}-(\sqrt{2})^{2} \\
\& =3-2
\end{aligned}
\] \& 1 \& 2 \& \begin{tabular}{l}
B2 cao \\
(B1 for \(\sqrt{3} \sqrt{3}+\sqrt{3} \sqrt{2}-\sqrt{3} \sqrt{2}-\sqrt{2} \sqrt{2}\) oe, \(\sqrt{3} \sqrt{3}-\sqrt{2} \sqrt{2}\) oe, or for \(2,3, \sqrt{4} \sqrt{6} \sqrt{9}\) seen)
\end{tabular} \\
\hline \begin{tabular}{l}
\[
\begin{equation*}
20 \tag{a}
\end{equation*}
\] \\
(b)
\end{tabular} \& \begin{tabular}{l}
\(\frac{96}{24}\) or 4 \\
\(\sqrt{4}\) or 2
\[
12 \times 2^{3}
\]
\end{tabular} \& 8

96 \& 3

2 \& | M1 for $\frac{96}{24}$ or $\frac{24}{96}$ or 4 or $\frac{1}{4}$ oe M1 for $\sqrt{\frac{96}{24}}$ or $\sqrt{\frac{24}{96}}$ or $\sqrt{'^{\prime}}$ or $\frac{1}{\sqrt{'^{\prime}}}$ or 2 or $\frac{1}{2}$ oe A1 cao |
| :--- |
| M1 for ' 2 '3 or 8 |
| A1 cao | \\

\hline 21 (a) \& \[
x \times 3-x \times 2 x^{2}

\] \& $3 x-2 x^{3}$ \& 2 \& | B2 cao |
| :--- |
| (B1 for a two term expression with either $3 x$ or $2 x^{3}$) | \\

\hline (b) \& \& $4 x(3 y+x)$ \& 2 \& M1 for taking out a factor of $x, 2 x, 2,4$ or $4 x$ A1 cao \\

\hline (c) \& $$
\frac{5 a}{b^{2}}
$$ \& \[

\frac{5 a}{b^{2}}

\] \& 2 \& | B2 for $\frac{5 a}{b^{2}}$ or $5 a b^{-2}\left(\right.$ accept $\left.\frac{5 a}{1 b^{2}}\right)$ |
| :--- |
| (B 1 for either dealing with the numbers or dealing with the powers of a) | \\

\hline (d) \& $$
\frac{x-3}{(x-3)(x+3)}
$$ \& \[

\frac{1}{x+3}

\] \& 2 \& | $\text { M1 for }(x-3)(x+3)$ |
| :--- |
| A1 cao | \\

\hline | 22 (a) |
| :--- |
| (b) | \& \[

$$
\begin{aligned}
& E D=\mathbf{a} \\
& D X=-2 \mathbf{b}+2 A C=2 \mathbf{a} \\
& (\text { So, } D X=2 E D)
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathbf{a}+\mathbf{b} \\
2 \mathbf{a}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \\
& 3
\end{aligned}
$$

\] \& | B1 $\mathbf{a}+\mathbf{b}$ oe |
| :--- |
| M1 for $(D X=) D A+A X$ |
| A1 for $(D X=)-2 \boldsymbol{b}+2$ (" $\boldsymbol{a}+\boldsymbol{b} ")$ |
| A1 $2 \boldsymbol{a}$ from fully correct proof | \\

\hline
\end{tabular}

Paper 5525_05				
No	Working	Answer	Mark	Notes
23	$\begin{aligned} & \pi(2 x)^{2} h=\frac{4}{3} \pi(3 x)^{3} \\ & h=\frac{\frac{4}{3} \pi(3 x)^{3}}{\pi(2 x)^{2}} \end{aligned}$	$9 x$	3	M1 for $\pi(2 x)^{2} h=\frac{4}{3} \pi(3 x)^{3}$ (condone absence of brackets) M1 (dep) for valid algebra that gets to $h=a x$ (condone one error in powers of numerical constants) A1 cao
$24 \quad \text { (i) }$ (ii)	$n^{2}+(n+1)^{2}=2\left(n^{2}+n\right)+1$	$2 n^{2}+2 n+1$ $2\left(n^{2}+n\right)$ is always even so $2\left(n^{2}+n\right)+1$ is always odd	4	M1 for at least 3 terms correct from $n^{2}+n+n+1$ A1 for $2 n^{2}+2 n+1$ oe M1 for recognizing $2 n^{2}$ is always even A1ft complete proof for their quadratic Alternative method M1 for recognizing that if n^{2} is odd then $(n+1)^{2}$ is even or vice versa A1 for complete proof
25		$\begin{gathered} 42 \\ 318 \end{gathered}$	2	B1 for answer in range $36-48$ B1 for answer in range 312-324
26 (a) (b)	$(x-3)^{2}-3^{2}+15$	$p=3, q=6$ Sketch	2 2	B2 for $p=3$ and $q=6$ (B1 for $p=3$ OR $q=6$) SC: award B2 for $(x-3)^{2}+6$ if p and q are not identified B1 for U shaped curve B1 ft for TP in first quadrant (ft if TP not in first quadrant)

Paper 5525_05				
No	Working	Answer	Mark	Notes
27 (a)	Graph translated 2 units upwards through points $(-4,2),(-2,4),(0,2)$ and $(3,5)$	Sketch	2	M1 for a vertical translation A1 curve through points $(-4,2),(-2,4),(0,2)$ and $(3,5) \pm 1 / 2$ square
(b)	Graph reflected in x-axis through points $(-4,0),(-2,-2),(0,0)$ and $(3,-3)$	Sketch	2	M1 for reflection in x-axis or y-axis A1 curve through points $(-4,0),(-2,-2),(0,0)$ and $(3,-3) \pm 1 / 2$ square

