Paper 5523_03				
No	Working	Answer	Mark	Notes
1		Cuboid drawn	2	B2 for correct isometric drawing in any orientation (ignore points 'behind', mark 7 vertices only); accept lines drawn near to dots as long as there is no ambiguity. (B1 for one of the three faces drawn correctly or for an isometric drawing of any cuboid)
2	Different makes of car Tally Frequency	Make of car Tally Frequency	3	B1 for make of car or list of at least 3 different makes B1 for tally or tally marks B1 for frequency or totals
3		6 tessellating shapes	2	B2 for fully correct with 5 or more additional shapes, no gaps (B1 for 4 or more shapes tessellating, with at least one shape inverted, with or without the given shape, ignore extras)
4	$\begin{aligned} & 24.90 \div 3 \text { or } 8.30 \\ & 24.90-18.30 \text { ' or } 2 \times 8.30 \end{aligned}$	16.6(0)	3	M1 for $24.90 \div 3$ or 8.30 M1 (dep) for $24.90-$ " 8.30 " or $2 \times$ " 8.30 " A1 for 16.60 or 16.6

Paper 5523_03

No	Working	Answer	Mark	Notes
5	315 24 24 1260 120 $\underline{6300}$ 240 $\underline{7560}$ $\underline{7200}$$\mathbf{3 0 0}$ $\mathbf{1 0}$ $\mathbf{5}$ 6000 200 100 1200 40 20$6000+200+100+1200+40+20=7560$$\mathbf{3}$ $\mathbf{0 . 1}$ $\mathbf{0 . 0 5}$ 60 2 1 12 0.4 0.2$60+2+1+12+0.4+0.2=75.6$	75.6(0)	3	M1 for a complete method with relative place value correct. Condone 1 multiplication error, addition not necessary. OR M1 for a complete grid with not more than 1 multiplication error, addition not necessary. OR M1 for sight of a complete partitioning method, condone 1 multiplication error, final addition not necessary. A1 for 7560 or digits 756(0) A1 (dep on M1, but not previous A1) for correct placement of decimal point.

Paper 5523_03

No	Working	Answer	Mark	Notes
6	15 and 16 parts shaded Alternative 1 $\frac{3}{4}=0.75 \text { or } 75 \%, \frac{4}{5}=0.8 \text { or } 80 \%$ Alternative 2 $\frac{3}{4}=\frac{15}{20}, \frac{4}{5}=\frac{16}{20}$	$\frac{4}{5}+\text { reason }$	3	M1 for shading 15 parts for $\frac{3}{4}$ M1 for shading 16 parts for $\frac{4}{5}$ A1 (dep on M2) for selection of $\frac{4}{5}$ with correct shading Alternative 1 M1 for $\frac{3}{4}=0.75$ or 75% M1 for $\frac{4}{5}=0.8$ or 80% A1 (dep on M2) for selection of 0.8 or 80% or $\frac{4}{5}$ with correct decimals or percentages Alternative 2 M1 for $\frac{3}{4}=\frac{15}{20}$ oe M1 for $\frac{4}{5}=\frac{16}{20}$ oe A1 (dep on M2) for selection of $\frac{4}{5}$ or $\frac{16}{20}$ with equivalent fractions

Paper 5523_03

No	Working	Answer	Mark	Notes
7	$5 \times 5 \times 6$	150	4	M1 for attempt at 1 division (e.g. $40 \div 8$), may be implied by marks or number on one edge of diagram or by 5 or 6 seen M1 for attempt at 3 divisions ($40 \div 8,40 \div 8,60 \div 10$), may be implied by marks or numbers on diagram or by 5,5 and 6 seen. M1 (dep on $1^{\text {st }}$ M1) for " 5 " \times " $5 " \times$ " 6 " A1 cao Alternatively M1 for $40 \times 40 \times 60$ or $8 \times 8 \times 10$ or 96000 or 640 seen M1 for $40 \times 40 \times 60$ and $8 \times 8 \times 10$ or 96000 and 640 seen M1 (dep on $\left.1^{\text {st }} \mathrm{M} 1\right)$ for " $(40 \times 40 \times 60)$ " $\div(8 \times 8 \times 10)$ " A1 cao SC:B1 for dividing area of one carton face by area of corresponding box face if M0
8 (a) (b) (c)	$7+2$ (or $20-11)$ are not lime flavour	$\begin{gathered} \frac{7}{20} \\ \frac{9}{20} \\ 0 \end{gathered}$	1 1 1	B1 for $\frac{7}{20}$ oe B1 for $\frac{9}{20}$ oe B1 for 0 , zero or nought ($\frac{0}{20}$ gets B0)
9 (a) (b) (c)		$\begin{aligned} & 80 x \\ & 95 y \\ & 80 x+95 y \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 for $80 x$ (accept $80 \times x, x 80, x \times 80$) seen B1 for $95 y$ (accept $95 \times y, y 95, y \times 95$) seen M1ft for adding " $80 x$ " and " $95 y$ " (algebraic expressions only) A1 for $80 x+95 y$

Paper 5523_03

No	Working	Answer	Mark	Notes
10 (a) (b) (c)	40×2 or $\frac{40}{30} \times 60$ or $40 \div \frac{1}{2}$	$\begin{aligned} & 40 \\ & 45 \\ & 80 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 cao B1 for 42 to 48 (accept $3 / 4$ hour) M1 for 40×2 or $\frac{40}{30}$ or $40 \div \frac{1}{2}$ A1 cao NB $\frac{40}{45} \times 60$ gets M0 A0
11 (a) (b)	$3 \times 3-4 \times 2 \text { or } 9-8$ $\begin{aligned} & -7-3=-10 \\ & 2 \times-10=-20 \\ & -20 \div 4 \end{aligned}$	1 -5	2 3	M1 for substitution of 3 and 2 into expression or 9 and 8 seen A1 cao M1 for substitution of 2 and -7 into $p(q-3)$ or sight of -20 or $-14-6$ M1 (dep) for " -20 " $\div 4$ A1 cao SC: B1 for -10 seen if M0
(a) (b)(i) (ii)	6 8 9 7 7 8 5 9 6 3 8 1 3 1 7 1 9 0 1	6 7 8 9 7 3 5 6 8 9 8 1 1 1 3 7 9 0 1 Explanation 79	3 2	M1 for unordered diagram (condone one error) A1 cao B1 for key $(\operatorname{eg} 6 \mid 7=67)$ B1 for '(order numbers and) select middle value' oe B1 cao

Paper 5523_03				
No	Working	Answer	Mark	Notes
13 (a) (c)		Reflection in y axis	1	B1 for triangle with vertices at ($-1,1$) (-3, 1) and ($-1,4$)
	Δ	Rotation by half turn about $(0,0)$	2	B2 for triangle with vertices $(-1,-1)(-3,-1)$ and $(-1,-4)$ (B1 for half turn not about $(0,0)$)
		Enlargement Scale factor 3 Centre (0,0)	3	B1 for 'enlargement' B1 for 'scale factor 3' or 3 seen B1 for 'centre $(0,0)$ ' B0 for any combination of transformations
14		4560	1	B1 cao
		45.6	1	B1 cao
		2.4	1	B1 cao
15 (a) (b)	$4 a-2 a+5 b+b$	$\begin{aligned} & 2 a+6 b \\ & x(x-6) \end{aligned}$	2 2	B2 cao (B1 for $2 a$ or $6 b$ seen) B2 cao (B1 for $x(a x+b)$ where a, b are numbers not equal to zero or $x-6$ seen on its own, or part of an expression)
(c)		$3 x-2 x^{3}$	2	B2 cao (B1 for $3 x$ or $2 x^{3}$)
(d)		$4 x(3 y+x)$	2	B2 cao (B1 for $2\left(6 x y+2 x^{2}\right)$ or $4\left(3 x y+x^{2}\right)$ or $x(12 y+4 x)$ or $2 x(6 y+2 x) \text { or } 4 x(\quad))$

Paper 5523_03

\begin{tabular}{|c|c|c|c|c|}
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \[
1-(0.2+0.3+0.1)
\]
\[
0.2 \times 200
\] \& \[
0.4
\]
\[
40
\] \& 2
2 \& \begin{tabular}{l}
M1 for \(1-(0.2+0.3+0.1)\) \\
A1 for 0.4 oe , accept \(\frac{0.4}{1}\) \\
M1 for \(0.2 \times 200\) \\
A1 cao \\
NB \(\frac{40}{200}\) is M1 A0, 40 out of 200 is M1 A1
\end{tabular} \\
\hline \begin{tabular}{l}
17 (a) (i) \\
(ii) \\
(b)
\end{tabular} \& \[
180-2 \times 25
\]
\[
180-95
\] \& \[
\begin{gathered}
130 \\
\text { Reason } \\
85
\end{gathered}
\] \& \[
3
\] \& \begin{tabular}{l}
M1 for \(180-2 \times 25\) \\
A1 cao \\
B1 for mentioning isosceles and equal (or base) angles or equal sides and equal (or base) angles \\
B1 cao
\end{tabular} \\
\hline \begin{tabular}{l}
18 (a) (i) \\
(ii) \\
(b)
\end{tabular} \& \& \begin{tabular}{l}
\[
7^{5}
\] \\
\(7^{4}\)
\[
\frac{1}{2}
\]
\end{tabular} \& 3

1 \& | B1 cao |
| :--- |
| B2 cao |
| (B1 for sight of 7^{5} or 7^{2+3} or 7×7^{3} or $7^{1} \times 7^{3}$ or $7^{2} \times 7^{2}$ or 7^{2+3-1}) |
| B1 for $\frac{1}{2}$ or 0.5 or 2^{-1} |

\hline | 19 (a) |
| :--- |
| (b) | \& \& \[

$$
\begin{aligned}
& 3 \times 10^{7} \\
& 0.002
\end{aligned}
$$

\] \& \[

1

\] \& \[

$$
\begin{aligned}
& \text { B1 cao } \\
& \text { B1 cao }
\end{aligned}
$$
\]

\hline
\end{tabular}

Paper 5523_03				
No	Working	Answer	Mark	Notes
20		Box plot	2	3 aspects: $1^{\text {st }}$ aspect - vertical line for median $2^{\text {nd }}$ aspect - box using correct quartiles $3^{\text {rd }}$ aspect - whiskers (could be single line) drawn with correct end points B2 for fully correct box plot (B1 for 1 aspect)
$21 \quad \text { (a) }$ (b)	e.g. $2 \times 3 \times 7$	$2 \times 3 \times 3 \times 7$ 42	2 2	M1 for a systematic method of at least 2 correct divisions by a prime number oe factor trees; can be implied by digits 2 , 3, 3, 7 on answer line. A1 for $2 \times 3^{2} \times 7$ or $2 \times 3 \times 3 \times 7$ B2 cao (B1 for $6,14,21$ or $2 \times 3 \times 7$)
22	$\frac{8}{3} \times \frac{5}{4}=\frac{8 \times 5}{3 \times 4}=\frac{40}{12}$	$3 \frac{1}{3}$	3	B1 for $\frac{8}{3}$ oe improper fraction or $\frac{5}{4}$ oe improper fraction M1 (dep on B1) for multiplying numerator and denominator of " $\frac{8}{3}$ " and " $\frac{5}{4}$ " A1 for $3 \frac{1}{3}$ oe mixed number or $\frac{10}{3}$ OR B1 for 1.25 and 2.67 or $2.66(\ldots)$ M1 (dep on B1) for correct method of multiplication A1 for $3 . \dot{3}$

Paper 5523_03				
No	Working	Answer	Mark	Notes
23			2	M1 for a relevant pair of intersecting arcs A1 for line drawn within guidelines, at least 3 cm in length, accept broken line [SC: B1 for line drawn within guidelines if M0]
24 (a) (b)(i) (ii)		$\begin{aligned} & -1,0,1,2,3 \\ & x \geq \frac{7}{2} \end{aligned}$ 4	2 3	B2 cao (-1 each error or omission) M1 for $2 x \geq 7$, condone use of $=$ sign or wrong equality A1 for $x \geq \frac{7}{2}$ oe as final answer SC:B1 for 3.5 or $\frac{7}{2}$ seen if M0 B1 ft from $x \geq " \frac{7}{2}$ "
25	$\begin{array}{r} 4 x+2 y=8 \\ 4 x-10 y=20 \\ \hline 12 y=-12 \\ y=-1 \\ 4 x+2(-1)=8 \\ x=2.5 \end{array}$	$\begin{aligned} & x=2.5 \\ & y=-1 \end{aligned}$	3	M1 for correct process to eliminate either x or y (condone one arithmetical error) M1 (dep) for substituting found value into either equation A1 for $x=2.5, y=-1$ [SC: B1 for $x=2.5$ or $y=-1$ if M0]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5523_03} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline 26 \& Interior angle of hexagon \(=\)
\[
\begin{aligned}
\& 180-(360 \div 6)=120 \\
\& 360-(90+120)
\end{aligned}
\] \& 150 \& 4 \& \begin{tabular}{l}
Alternative 1 \\
M1 for \(360 \div 6\) \\
A1 for 60 \\
M1 (dep on M1) for " 60 " +90 \\
A1 cao \\
Alternative 2 \\
M1 for \(360 \div 6\) \\
A1 for 60 \\
M1 (dep on M1) for \(360-(2 \times\) " 60 " +90\()\) \\
A1 cao \\
Alternative 3 \\
M1 for \((6-2) \times 180 \div 6\) \\
A1 for 120 \\
M1 (dep on M1) for \(360-(90+\) " 120 ") \\
A1 cao
\end{tabular} \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& Cumulative freq. diag. curve/ segments
\[
100-42
\] \& \begin{tabular}{l}
\[
\begin{gathered}
(16), 50,82,96, \\
100
\end{gathered}
\] \\
Cum. freq graph
\end{tabular} \& 1
2

2 \& | B1 cao |
| :--- |
| B1 for 4 or 5 points plotted correctly ± 1 full (2 mm) square depending on sensible table (condone 1 addition error) |
| B1 (dep) for points joined by curve or line segments provided no gradient is negative - ignore any part of graph outside range of their points. |
| (SC:B1 if 4 or 5 points plotted not at end but consistent within each interval and joined) |
| M1 (ft dep on graph being cf) for reading from graph at 18 or 19 , can be implied by answer in range 40 to 46 |
| A1 for answer in range 56 to 60 or ft for $100-{ }^{\prime} 42^{\prime} \pm 1$ full (2mm) square |

\hline
\end{tabular}

