2006_11_P-6

Pap	Paper 5525/06						
	No	Working	Answer	Mark	Notes		
1	(a)	$\frac{\sqrt{25.96}}{4.05} = \frac{5.09509}{4.05}$	1.258048316	2	M1 for 5.09 or 4.05 or 25.96 seen A1 for at least 4 sf rounded or truncated: 1.258(048316) or 1.26		
	(b)		1.26	1	B1 for 1.26 or ft from (a); 1.260 gets B0		
2	(a)		p^9	1	B1cao		
	(b)		q^5	1	B1cao		
	(c)		t^{12}	1	B1cao		
	(d)	6m + 8 + 3m - 15	9m - 7	2	M1 for correct expansion of at least one term A1 for $9m - 7$		
3		$168^{2} + 157^{2} = 28\ 224 + 24\ 649$ $= 52\ 873$ $\sqrt{28224 + 24649}$	229.9 - 230	3	M1 for $168^2 + 157^2$ M1 $\sqrt{168^2 + 157^2}$ or $\sqrt{28224 + 24649}$ or $\sqrt{52873}$ ie not doubling A1 for 229.9-230		
4		$\frac{8}{25} \times 1750 \text{ or } 0.32 \times 1750 \text{ or } 8 \times 70$	560	3	M1 for $\frac{8}{25}$ oe seen or $\frac{1750}{25}$ oe seen or 0.32 or 70 seen M1 for $\frac{8}{25} \times 1750$ oe A1 for 560		

Pap	Paper 5525/06							
-	No		Working	Answer	Mark	Notes		
5	(a)	3.6 3.7	79.4(97)	3.6	4	B2 for trial $3.1 \le x \le 3.7$ evaluated (B1 for trial $3 \le x \le 4$ evaluated) B1 for different trial $3.615 \le x \le 3.65$ evaluated B1 for 3.6, (dep on at least one of 2 previous Bs) or anything that rounds to 3.6 Values evaluated can be rounded or truncated, but to at least 1 d.p.		
	(b)(i) (ii)			$x^{2}(x+4) = 100$ 7.6	2	B1 for $x^2(x+4)$ seen or $x \times x \times x + 4$ <i>OR</i> "3.6" ³ +4×"3.6" ² ≈ 100 (dep on 3.6≤(a)≤3.7); (46.656+4×51.84) B1 ft from "3.6" ie "3.6" + 4		
6	(a)	$121.6(0) \times \frac{100}{4}$		3040	2	M1 for 121.6(0) $\times \frac{100}{4}$ A1 cao		
	(b)	1.04 oe seen 2828.8 ÷ 1.04		2720	3	B1 for 1.04 oe seen M1 for 2828.8÷1.04 oe A1 for 2720		
7	(a)			95 185 220 235 240	1	B1 for all correct		
	(b)			Points curve or line segment	2	 B1 ft for at least 4 or 5 pts plotted correctly (± 1 sq) at ends of interval dep on sensible table (cf; no more than 1 error) B1ft (dep on previous B1) for pts joined by curve/line segments provided no gradient is negative (SC: B1 if 4 or 5 pts plotted not at ends but consistently 		
	(c)			20.5 - 22	1	within each interval and joined) B1 ft from a cf graph using cf = $120 (.5)$		

Pape	er 5525/	/06			
	No	Working	Answer	Mark	Notes
8	(a) (b)		perp bisector Angle bisector	2 2	B1 appropriate arcs B1 if within guidelines B1 appropriate arcs B1 if within guidelines
9	(a)	12 600 or 1.26×10^4	1.12×10^2	2	M1 for 12 600 or 1.26×10^4 A1 for $1.12 \times 10^2 - 1.123 \times 10^2$ oe
	(b)	$d^2 = \frac{3h}{2}$	$\frac{2d^2}{3}$	2	M1 for squaring each side A1 for $\frac{2d^2}{3}$ oe
10		$\cos x = \frac{3.9}{4.7} = 0.8297$	33.9	3	M1 for $\cos = \frac{3.9}{4.7}$ (= 0.8297) M1 (dep) for \cos^{-1} A1 for 33.9 -33.93 SC B2 for 0.592(069) or 37.6(923) or 37.7
11		Region $x < 3$ Region $y > -2$ Region $y < x$	R shaded	4	 B4(dep on well defined border) correct region labelled R. If not labelled, dep on all inequalities being clearly shaded (B3 corrected region with incorrectly marked boundaries) (B2 2 out of 3 correct regions, consistently shaded or all 3 lines drawn to form a triangle) (B1 any one region correctly shaded either side or any two correct lines drawn)

Paper 5525	/06			Paper 5525/06						
No	Working	Answer	Mark	Notes						
12	$ \begin{pmatrix} \frac{1}{2} \times \pi \times 30^2 + 60 \times 45 \end{pmatrix} \times 90 (1/2 \times 2827.43 + 2700) \times 90 (1413.7+2700) \times 90 4113.7 \times 90 = 370234.5 $	370 000	5	Cross-section approach: M1 for $(\frac{1}{2} \times)\pi \times 30^2$ (=2827.4 or 1413.7) or 60×45 (=2700) M1 for " $(\frac{1}{2} \times)\pi \times 30^2$ " + 60×45 (complete method)						
				M1 for " <i>any</i> area" × 90 or 4110–4115 A1 for 370 000 to 370300 B1 correct units Volume approach: M1 for $(\frac{1}{2} \times)\pi \times 30^2$ or 60×45						
				M1 for " $(\frac{1}{2} \times)\pi \times 30^2$ "×90 (=127234 or 254468) or 60 × 45 × 90 (=243000) M1 for addition of two volumes A1 for 370 000 to 370300 (370 235) B1 correct units						
13 (i) (ii) (iii)		E A I	3	B1 for E cao B1 for A cao B1 for I cao						
14	$60 \times 40 \times 2$ 4800 "4800"= $\pi \times 4^2 \times h$ "4800" "50.265"	95.5	5	M1 60 × 40 × 2 A1 for 4800 M1 for $\pi \times 4^2$ or 50.265 M1 for "4800" ÷ " $\pi \times 4^2$ " A1 95.49 - 95.5						
15	$\frac{x}{450} \times 70$ 7, 18.8, 15.2, 28.9	7, 19, 15, 29	3	M1 valid method A2 all correct (A1 2 or 3 correct) SC unrounded: M1 A1 A0						

Раре	Paper 5525/06						
	No	Working	Answer	Mark	Notes		
16	(a)	$d = kt^2$	$d = 5t^2$	3	M1 for $d = kt^2$ (accept any $k \neq 0, 1$)		
		2			M1(dep) for $20 = k \times 2^2$		
		$20 = k \times 2^2$			A1 for $d = 5t^2$		
	(b)		45	1	B1 for 45 cao		
	(c)	$605 = 5t^2$	11	3	M1 for $605 = "5"t^2$ ("5" $\neq 1$)		
					M1 for $\sqrt{\frac{605}{"5"}}$		
		$\sqrt{\frac{605}{5}}$			$\sqrt{5}$		
		V 2			A1 for 11 cao		
17		$eg \ 0.91^8 = 0.4702$	8	3	B1 for 0.91 seen oe		
					M1 for 0.91^2 (0.8281) or higher power evaluated		
10	()				A1 for 8 – 8.01		
18	(a)	2x + 2y = 10		1	B1 for $2x + 2y = 10$ oe		
	(b)	$x^2 + y^2 = 16$		3	B1 for $x^2 + y^2 = 4^2$ oe		
		$x^2 + (5 - x)^2 = 16$			M1 for rearranging first equation and substituting into second		
					A1 for sight of $25-10x + x^2$ and correct simplification		
					to the given equation		
	(c)	$10 \pm \sqrt{(-10)^2 - 4 \times 2 \times 9}$		3	M1 for correct substitution into quadratic formula		
		$x = \frac{10 \pm \sqrt{(-10)^2 - 4 \times 2 \times 9}}{2 \times 2}$			(allow sign errors)		
		$10 \pm \sqrt{28}$			A1 for correct simplification		
		4	3.82; 1.18		A1 for 3.82 – 3.823, 1.177 – 1.18		

	er 5525/0 No	Working	Answer	Mark	Notes
19		qx = p(x+c)	$\frac{pc}{q-p}$	4	M1 for $qx = p(x+c)$ oe
		qx = px + pc	q-p		M1 for $qx = px + pc$ oe
		qx - px = pc			M1 for $x(q-p) = pc$ oe process
		x(q-p) = pc			A1 for $\frac{pc}{q-p}$ oe
20	(a)	eg $\frac{4.2^2 + 5.3^2 - 7.6^2}{2 \times 4.2 \times 5.3}$ -12.03	105.7	3	M1 for correct substitution into cosine rule to find any angle
		$\frac{-12.03}{44.52}$ or -0.2702			M1(dep) for correct order of evaluation of their cosine rule to get to $\cos X = \frac{p}{q}$ where p and q are numbers
					A1 105.67 – 105.7
	(b)	eg $\frac{1}{2} \times 4.2 \times 5.3 \times \sin'' 105.67^{\circ''}$	10.7	3	M2 for substitution of lengths of 2 sides and their included angle into $\frac{1}{2}ab\sin C$
					(M1 if it is their angle but not the included one) A1 for $10.7 - 10.72$
21	(a)(i)	4.75	0.887850467	3	B3 LB = $0.8878-0.888$ and UB = $0.9238 - 0.924$
	(ii)	$ 5.35 \\ 4.85 \\ \overline{5.25} $	0.923809523		(B2 one of LB or UB correct)(B1 sight of one of 4.75, 5.35, 4.85, 5.25)SC: B2 correct answers in wrong order
	(b)		0.9 Bounds agree to 1 dp	2	B1 dep on two correct bounds for gradient B1 dep on two correct bounds for gradient

Paper 5525	Paper 5525/06						
No	Working	Answer	Mark	Notes			
22	0.62 × 0.38 or 0.2356 × 2 oe	0.4712	4	B1 for 0.38 seen M1 for 0.62 × (1-0.62) or 0.2356 M1(dep) for × 2 oe A1 for 0.47, 0.471, 0.4712 oe			
23	$\frac{49152}{12000} \text{ or } 4.096$ $\sqrt[3]{4.096} \text{ or } 1.6$ $(1.6)^{2} \text{ or } 2.56$	3800	4	M1 for $\frac{49152}{12000}$ or 4.096 oe M1 for $\sqrt[3]{4.096}$ or 1.6 oe M1 for "1.6" ² or 2.56 oe A1 for 3800 cao			