2006_11_P-6

Paper 5525/06

No	Working	Answer	Mark	Notes
1 (a) (b)	$\frac{\sqrt{25.96}}{4.05}=\frac{5.09509 \ldots}{4.05}$	1.258048316 1.26	2	M1 for $5.09 \ldots$ or 4.05 or 25.96 seen A1 for at least 4 sf rounded or truncated: $1.258(048316 \ldots)$ or 1.26 B1 for 1.26 or ft from (a); 1.260 gets B0
2 (a) (b) (c) (d)	$6 m+8+3 m-15$	$\begin{gathered} p^{9} \\ q^{5} \\ t^{12} \\ 9 m-7 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	B1cao B1cao B1cao M1 for correct expansion of at least one term A1 for $9 m-7$
3	$\begin{aligned} & 168^{2}+157^{2}=28224+24649 \\ &=52873 \\ & \sqrt{28224+24649} \end{aligned}$	229.9-230	3	M1 for $168^{2}+157^{2}$ M1 $\sqrt{168^{2}+157^{2}}$ or $\sqrt{28224+24649}$ or $\sqrt{52873}$ ie not doubling A1 for 229.9-230
4	$\frac{8}{25} \times 1750 \text { or } 0.32 \times 1750 \text { or } 8 \times 70$	560	3	M1 for $\frac{8}{25}$ oe seen or $\frac{1750}{25}$ oe seen or 0.32 or 70 seen M1 for $\frac{8}{25} \times 1750$ oe A1 for 560

Paper 5525/06				
No	Working	Answer	Mark	Notes
(a) (b)(i) (ii)	3.1 $68.2(31)$ 3.2 $73.7(28)$ 3.3 $79.4(97)$ 3.4 $85.5(44)$ 3.5 $91.8(75)$ 3.6 $98.4(96)$ 3.7 $105.4(13)$ 3.65 $101.9(1725)$ 	3.6 $x^{2}(x+4)=100$	4	B2 for trial $3.1 \leq x \leq 3.7$ evaluated (B1 for trial $3<x<4$ evaluated) B1 for different trial $3.615 \leq x \leq 3.65$ evaluated B1 for 3.6, (dep on at least one of 2 previous Bs) or anything that rounds to 3.6 Values evaluated can be rounded or truncated, but to at least 1 d.p. B1 for $x^{2}(x+4)$ seen or $x \times x \times x+4$ OR $" 3.6{ }^{" 3}+4 \times " 3.6^{" 2} \approx 100($ dep on $3.6 \leq(\mathrm{a}) \leq 3.7)$; ($46.656+4 \times 51.84$) B1 ft from " 3.6 " ie " 3.6 " +4
$6 \quad \text { (a) }$ (b)	$\begin{aligned} & 121.6(0) \times \frac{100}{4} \\ & 1.04 \text { oe seen } \\ & 2828.8 \div 1.04 \end{aligned}$	$\begin{aligned} & 3040 \\ & 2720 \end{aligned}$	2 3	M1 for $121.6(0) \times \frac{100}{4}$ A1 cao B1 for 1.04 oe seen M1 for $2828.8 \div 1.04$ oe A1 for 2720
7 (a) (b) (c)		95185220235 240 Points curve or line segment $20.5-22$	1 2 1	B1 for all correct B1 ft for at least 4 or 5 pts plotted correctly ($\pm 1 \mathrm{sq}$) at ends of interval dep on sensible table (cf; no more than 1 error) B1ft (dep on previous B1) for pts joined by curve/line segments provided no gradient is negative (SC: B1 if 4 or 5 pts plotted not at ends but consistently within each interval and joined) B1 ft from a cf graph using $\mathrm{cf}=120$ (.5)

Paper 5525/06				
No	Working	Answer	Mark	Notes
8 (a) (b)		perp bisector Angle bisector	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	B1 appropriate arcs B1 if within guidelines B1 appropriate arcs B 1 if within guidelines
(a) (b)	$12600 \text { or } 1.26 \times 10^{4}$ $d^{2}=\frac{3 h}{2}$	$\begin{array}{r} 1.12 \times 10^{2} \\ \frac{2 d^{2}}{3} \end{array}$	2 2	M1 for 12600 or 1.26×10^{4} A1 for $1.12 \times 10^{2}-1.123 \times 10^{2}$ oe M1 for squaring each side A1 for $\frac{2 d^{2}}{3}$ oe
10	$\cos x=\frac{3.9}{4.7}=0.8297 \ldots$	33.9	3	M1 for $\cos =\frac{3.9}{4.7}(=0.8297 \ldots)$ M1 (dep) for $\cos ^{-1}$ A1 for 33.9-33.93 SC B2 for $0.592(069 \ldots$) or $37.6(923 \ldots)$ or 37.7
11	$\begin{aligned} & \text { Region } x<3 \\ & \text { Region } y>-2 \\ & \text { Region } y<x \end{aligned}$	R shaded	4	B4(dep on well defined border) correct region labelled R. If not labelled, dep on all inequalities being clearly shaded (B3 corrected region with incorrectly marked boundaries) (B2 2 out of 3 correct regions, consistently shaded or all 3 lines drawn to form a triangle) (B1 any one region correctly shaded either side or any two correct lines drawn)

Paper 5525/06				
No	Working	Answer	Mark	Notes
12	$\begin{aligned} & \left(\frac{1}{2} \times \pi \times 30^{2}+60 \times 45\right) \times 90 \\ & (1 / 2 \times 2827.43+2700) \times 90 \\ & (1413.7 .+2700) \times 90 \\ & 4113.7 . . \times 90=370234.5 \ldots \end{aligned}$	370000	5	Cross-section approach: M1 for $\left(\frac{1}{2} \times\right) \pi \times 30^{2}(=2827.4$ or 1413.7) or 60×45 (=2700) M1 for " $\left(\frac{1}{2} \times\right) \pi \times 30^{2}$ " $+60 \times 45$ (complete method) M1 for "any area" $\times 90$ or 4110-4115 A1 for 370000 to 370300 B1 correct units Volume approach: M1 for $\left(\frac{1}{2} \times\right) \pi \times 30^{2}$ or 60×45 M1 for " $\left(\frac{1}{2} \times\right) \pi \times 30^{2}$ " $\times 90$ (=127234 or 254468) or $60 \times 45 \times 90(=243000)$ M1 for addition of two volumes A1 for 370000 to $370300 \quad(370235)$ B1 correct units
13 (i) (ii) (iii)		$\begin{gathered} \hline \mathrm{E} \\ \mathrm{~A} \\ \mathrm{I} \end{gathered}$	3	B1 for E cao B1 for A cao B1 for I cao
14	$\begin{aligned} & \hline 60 \times 40 \times 2 \\ & 4800 \\ & " 4800 "=\pi \times 4^{2} \times h \\ & \frac{" 4800 "}{" 50.265 \ldots \text { ".." }} \end{aligned}$	95.5	5	M1 $60 \times 40 \times 2$ A1 for 4800 M1 for $\pi \times 4^{2}$ or $50.265 \ldots$ M1 for " 4800 " \div " $\pi \times 4^{2 "}$ A1 95.49-95.5
15	$\begin{aligned} & \frac{x}{450} \times 70 \\ & 7,18.8,15.2,28.9 \end{aligned}$	7,19, 15, 29	3	M1 valid method A2 all correct (A1 2 or 3 correct) SC unrounded: M1 A1 A0

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No \& Working \& Answer \& \[
\begin{gathered}
\text { Mark } \\
\hline 3
\end{gathered}
\] \& Notes \\
\hline \[
\begin{array}{|l|}
\hline 16 \quad \text { (a) }
\end{array}
\] \& \[
d=k t^{2}
\]
\[
20=k \times 2^{2}
\] \& \[
d=5 t^{2}
\] \& \[
3
\] \& \begin{tabular}{l}
M1 for \(d=k t^{2}\) (accept any \(\boldsymbol{k} \neq 0,1\)) M1 (dep) for \(20=k \times 2^{2}\) \\
A 1 for \(d=5 t^{2}\)
\end{tabular} \\
\hline (b) \& \& 45 \& 1 \& B1 for 45 cao \\
\hline (c) \& \[
\begin{gathered}
605=5 t^{2} \\
\sqrt{\frac{605}{5}}
\end{gathered}
\] \& 11 \& 3 \& \begin{tabular}{l}
M1 for \(605=" 5 " t t^{2}(" 5 " \neq 1)\) \\
M1 for \(\sqrt{\frac{605}{" 5 "}}\) \\
A1 for 11 cao
\end{tabular} \\
\hline 17 \& eg \(0.91{ }^{8}=0.4702 \ldots\) \& 8 \& 3 \& \begin{tabular}{l}
B1 for 0.91 seen oe \\
M1 for \(0.91^{2}(0.8281)\) or higher power evaluated \\
A1 for 8-8.01
\end{tabular} \\
\hline \begin{tabular}{l}
18 (a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{gathered}
2 x+2 y=10 \\
x^{2}+y^{2}=16 \\
x^{2}+(5-x)^{2}=16
\end{gathered}
\]
\[
\begin{aligned}
\& x=\frac{10 \pm \sqrt{(-10)^{2}-4 \times 2 \times 9}}{2 \times 2} \\
\& \frac{10 \pm \sqrt{28}}{4}
\end{aligned}
\] \& 3.82; 1.18 \& 1
3

3 \& | B1 for $2 x+2 y=10$ oe |
| :--- |
| B1 for $x^{2}+y^{2}=4^{2}$ oe |
| M1 for rearranging first equation and substituting into second |
| A1 for sight of $25-10 x+x^{2}$ and correct simplification to the given equation |
| M1 for correct substitution into quadratic formula (allow sign errors) |
| A1 for correct simplification |
| A1 for $3.82-3.823,1.177-1.18$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525/06} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline 19 \& \[
q x=p(x+c)
\]
\[
q x=p x+p c
\]
\[
q x-p x=p c
\]
\[
x(q-p)=p c
\] \& \[
\frac{p c}{q-p}
\] \& 4 \& \begin{tabular}{l}
M1 for \(q x=p(x+c)\) oe \\
M 1 for \(q x=p x+p c\) oe \\
M1 for \(x(q-p)=p c\) oe process \\
A1 for \(\frac{p c}{q-p}\) oe
\end{tabular} \\
\hline \begin{tabular}{l}
\[
20
\] \\
(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \text { eg } \frac{4.2^{2}+5.3^{2}-7.6^{2}}{2 \times 4.2 \times 5.3} \\
\& \frac{-12.03}{44.52} \text { or }-0.2702 \ldots
\end{aligned}
\]
\[
\text { eg } \frac{1}{2} \times 4.2 \times 5.3 \times \sin " 105.67^{\circ} \text { " }
\] \& \[
105.7
\]
\[
10.7
\] \& 3

3 \& | M1 for correct substitution into cosine rule to find any angle |
| :--- |
| M1 (dep) for correct order of evaluation of their cosine rule to get to $\cos X=\frac{p}{q}$ where p and q are numbers |
| A1 105.67-105.7 |
| M2 for substitution of lengths of 2 sides and their included angle into $\frac{1}{2} a b \sin C$ |
| (M1 if it is their angle but not the included one) A1 for $10.7-10.72$ |

\hline | $21 \quad \text { (a)(i) }$ |
| :--- |
| (ii) |
| (b) | \& \[

$$
\begin{aligned}
& \frac{4.75}{5.35} \\
& \frac{4.85}{5.25}
\end{aligned}
$$
\] \& 0.887850467

0.923809523
0.9

Bounds agree
to 1 dp

3

\] \& | B3 LB $=0.8878-0.888$ and $\mathrm{UB}=0.9238-0.924$ |
| :--- |
| (B2 one of LB or UB correct) |
| (B1 sight of one of $4.75,5.35,4.85,5.25$) |
| SC: B2 correct answers in wrong order |
| B1 dep on two correct bounds for gradient |
| B1 dep on two correct bounds for gradient |

\hline
\end{tabular}

Paper 5525/06

No	Working	Answer	Mark	Notes
22	$\begin{aligned} & 0.62 \times 0.38 \text { or } 0.2356 \\ & \times 2 \text { oe } \end{aligned}$	0.4712	4	B1 for 0.38 seen M1 for $0.62 \times(1-0.62)$ or 0.2356 M1 (dep) for $\times 2$ oe A1 for $0.47,0.471,0.4712$ oe
23	$\begin{aligned} & \frac{49152}{12000} \text { or } 4.096 \\ & \sqrt[3]{4.096} \text { or } 1.6 \\ & " 1.6^{\prime 2} \text { or } 2.56 \end{aligned}$	3800	4	M1 for $\frac{49152}{12000}$ or 4.096 oe M1 for $\sqrt[3]{4.096}$ or 1.6 oe M1 for " 1.6 " ${ }^{2}$ or 2.56 oe A1 for 3800 cao

