

Paper Reference(s)

5525/05
 Edexcel GCSE Mathematics A-1387

Examiner's use only

Team Leader's use only
\square

Tuesday 7 November 2006 - Morning

Time: 2 hours

> Materials required for examination Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may be used.

Items included with question papers
Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.
Answer ALL the questions. Write your answers in the spaces provided in this question paper.
You must NOT write on the formulae page. Anything you write on the formulae page will gain NO credit.
If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).
There are 23 questions in this question paper. The total mark for this paper is 100 .
There are 24 pages in this question paper. Any blank pages are indicated.
Calculators must not be used.

Advice to Candidates

Show all stages in any calculations.
Work steadily through the paper. Do not spend too long on one question.
If you cannot answer a question, leave it and attempt the next one.
Return at the end to those you have left out.

GCSE Mathematics 1387/8

Formulae: Higher Tier
You must not write on this formulae page.
Anything you write on this formulae page will gain NO credit.

Volume of a prism $=$ area of cross section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

In any triangle ABC

Sine Rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$, are given by

$$
x=\frac{\left.-b \pm \sqrt{\left(b^{2}-4 a c\right.}\right)}{2 a}
$$

Answer ALL TWENTY THREE questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

You must NOT use a calculator.

1. Mr Brown makes some compost.

He mixes soil, manure and leaf mould in the ratio 3:1:1
Mr Brown makes 75 litres of compost.
(a) How many litres of soil does he use?
\qquad

Mr Brown sows 200 flower seeds.

For each flower seed the probability that it will produce a flower is 0.8
(b) Work out an estimate for the number of these flower seeds that will produce a flower.
2. Here are the first five terms of a number sequence.

$$
\begin{array}{lllll}
3 & 7 & 11 & 15 & 19
\end{array}
$$

(a) Write down an expression, in terms of n, for the nth term of this sequence.

Adeel says that 319 is a term in the number sequence.
(b) Is Adeel correct?

You must justify your answer.
\qquad
\qquad
3. The density of concrete is 2.3 grams per cm^{3}.
(a) Work out the mass of a piece of concrete with a volume of $20 \mathrm{~cm}^{3}$.

480 grams of a cheese has a volume of $400 \mathrm{~cm}^{3}$.
(b) Work out the density of the cheese.
4. Estimate the value of $\frac{21 \times 3.86}{0.207}$
\qquad
5. (a) Solve $3(x-4)=x+24$

$$
x=
$$

\qquad
(b) Simplify fully $\quad\left(2 x^{3} y\right)^{4}$
\qquad
6.

(a) Describe fully the single transformation that maps triangle \mathbf{A} onto triangle \mathbf{B}.
\qquad
(b) On the grid, rotate triangle $\mathbf{A} 90^{\circ}$ anticlockwise about the point $(-1,1)$

Label your new triangle \mathbf{C}.
7. (a) $-3 \leqslant n<2$
n is an integer.
Write down all the possible values of n.
\qquad
(b) Solve the inequality

$$
5 x<2 x-6
$$

8. Work out $3 \frac{2}{5}-1 \frac{3}{4}$
\qquad
9. The table shows some expressions.

Expression	Length	Area	Volume	None of these
$\pi a b$				
$a+2 b$				
$\pi a^{2}+b$				

The letters a and b represent lengths.
π and 2 are numbers that have no dimensions.

Place a tick (\checkmark) in the correct column to show whether the expression can be used to represent a length, an area, a volume or none of these.
(Total 3 marks)
10. (a) Write 5.7×10^{-4} as an ordinary number.
(b) Work out the value of $\left(7 \times 10^{4}\right) \times\left(3 \times 10^{5}\right)$

Give your answer in standard form.
\qquad
11. Solve the simultaneous equations

$$
\begin{aligned}
& 3 x-4 y=13 \\
& 2 x+3 y=3
\end{aligned}
$$

\qquad
12. The box plot gives information about the distribution of the heights of all the trees in a wood.

(a) Write down the median height of the trees.
\qquad
(b) Work out the interquartile range of the heights of the trees.
\qquad

There are 300 trees in the wood.
(c) Work out the number of trees in the wood with a height of 17 m or more.
13.

A, B, C and D are points on the circumference of a circle, centre O. $A C$ is a diameter of the circle.

Angle $D A C=20^{\circ}$.
(a) Find the size of angle $A C D$.
\qquad
(b) Find the size of angle $D B C$.

Give a reason for your answer.
\qquad
\qquad
\qquad
14. Mary has a drawing pin.

When the drawing pin is dropped it can land either 'point up' or 'point down'.
The probability of it landing 'point up' is 0.4
Mary drops the drawing pin twice.
(a) Complete the probability tree diagram.

(2)
(b) Work out the probability that the drawing pin will land 'point up' both times.
15. The table shows some rows of a number pattern.

Row 1	1^{2}	-	(0×2)
Row 2	2^{2}	-	(1×3)
Row 3	3^{2}	-	(2×4)
Row 4	4^{2}	-	(3×5)
Row \boldsymbol{n}	$\ldots \ldots \ldots$		

(a) In the table, write down an expression, in terms of n, for Row n.
(b) Simplify fully your expression for Row n.

You must show your working.

Diagram NOT accurately drawn

A is the point $(0,1)$
B is the point $(10,6)$
The equation of the straight line through A and B is $\quad y=\frac{1}{2} x+1$
(a) Write down the equation of another straight line that is parallel to
$y=\frac{1}{2} x+1$
(b) Write down the equation of another straight line that passes through the point $(0,1)$
(c) Find the equation of the line perpendicular to $A B$ passing through B.
(3) Q16
17. The incomplete table and histogram give some information about the distances walked by some students in a school in one year.

(a) Use the information in the histogram to complete the frequency table.

Distance (d) in km	Frequency
$0<d \leqslant 300$	210
$300<d \leqslant 400$	350
$400<d \leqslant 500$	
$500<d \leqslant 1000$	

(b) Use the information in the table to complete the histogram.
(1)
(Total 3 marks)
18.
$O A B$ is a sector of a circle, centre O.
Angle $A O B=60^{\circ}$.
$O A=O B=12 \mathrm{~cm}$.
Work out the length of the $\operatorname{arc} A B$.
Give your answer in terms of π.

Diagram NOT accurately drawn
19. Here is a sketch of the curve $y=\sin x^{\circ}$ for $0 \leqslant x \leqslant 360$.

(a) Given that $\sin 30^{\circ}=\frac{1}{2}$, write down the value of
(i) $\sin 150^{\circ}$
(ii) $\sin 330^{\circ}$

The graph of $y=\cos x^{\circ}$ for $0 \leqslant x \leqslant 360$ is drawn below.

(b) Use the graph to find estimates of the solutions, in the interval $0 \leqslant x \leqslant 360$, of the equation
(i) $\cos x^{0}=-0.4$
(ii) $4 \cos x^{0}=3$
20. (a) Expand and simplify $(2 x+5)(3 x-2)$
\qquad
(b) Given that $x^{2}+6 x-5=(x+p)^{2}+q$ for all values of x,
find the value of
(i) p,
(ii) q.
\qquad
$p=$
$q=$
(3)
21. (a) Write down the value of $4^{\frac{3}{2}}$
(b) Write $\sqrt{8}$ in the form $m \sqrt{2}$, where m is an integer.
(c) Write $\sqrt{50}$ in the form $k \sqrt{2}$, where k is an integer.
(d) Rationalise $\frac{1+\sqrt{2}}{\sqrt{2}}$
22.

$O A B$ is a triangle.
B is the midpoint of $O R$.
Q is the midpoint of $A B$.
$\overrightarrow{O P}=2 \mathbf{a} \quad \overrightarrow{P A}=\mathbf{a} \quad \overrightarrow{O B}=\mathbf{b}$
(a) Find, in terms of \mathbf{a} and \mathbf{b}, the vectors
(i) $\overrightarrow{A B}$,
(ii) $\overrightarrow{P R}$,
(iii) $\overrightarrow{P Q}$.
(b) Hence explain why $P Q R$ is a straight line.

The length of $P Q$ is 3 cm .
(c) Find the length of $P R$.
23. By eliminating y, find the solutions to the simultaneous equations

$$
\begin{aligned}
& x^{2}+y^{2}=25 \\
& y=x-7
\end{aligned}
$$

$x=$
$y=$ \qquad
or $x=$ \qquad $y=$ \qquad

END

