Paper 5523/03

No	Working	Answer	Mark	Notes
$1 \quad \text { (a) }$ (b)	$16+32$	$\begin{gathered} 48 \\ 4 \end{gathered}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { B2 cao } \\ & \text { (B1 for } 16 \text { or } 32 \text { seen) } \\ & \text { B1 cao } \end{aligned}$
2 (b)		$\begin{equation*} \tag{a} \end{equation*}$	3 2	B3 all correct (B2 for 4 or 5 entries correct) (B1 for 2 or 3 entries correct) B2 for $\frac{19}{70}$, accept $0.27(\ldots)$ (B1 for $\frac{k}{70}$ with $0<k<70$ or for the correct probability incorrectly expressed, eg '19 out of 70')
3 (a) (b) (c)		$\begin{gathered} 6 \\ 20 \\ 24 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { B1 cao } \\ & \text { B1 cao } \\ & \text { B1 cao } \end{aligned}$
4	$(40 \div 10) \times(60 \div 20) \times(100 \div 10)$	120	3	M1 attempt one division (eg $40 \div 10$), may be implied by marks or number on one edge of diagram or by two of 4,3 and 10 seen M1 (dep) for $(" 40 \div 10 ") \times(" 60 \div 20$ " $) \times(" 100 \div 10 ")$ A1 cao OR M1 for $10 \times 20 \times 10$ or $40 \times 60 \times 100$ M1 (dep) for " 240000 " \div " 2000 " A1 cao

Paper 5523/03

No	Working	Answer	Mark	Notes
$5 \quad$ (a)	1076 807x 9146 $\begin{aligned} & 6000+1800+270+800+240+36=9146 \\ & 2.5 \times 1000 \text { or } 2500 \end{aligned}$	91.46	3	M1 for a complete method with relative place value correct, condone 1 multiplication error, addition not necessary A1 for 9146 A1 (dep on M1) for correct conversion of their total into £s OR M1 for a completed grid with not more then 1 multiplication error, addition not necessary A1 for 9146 A1 (dep on M1) for correct conversion of their total into £s OR M1 for sight of a complete partitioning method, condone 1 multiplication error, final addition not necessary A1 for 9146 A1 (dep on M1) for correct conversion of their total into £s B1 for 2.5×1000 or 2500 M1 for weight $\div 500$ A1 cao
6 (a) (b)		(0)76	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1 for $(0) 76^{\circ}\left(\pm 2^{\circ}\right)$ B1 for a pt marked on a bearing of $155^{\circ}\left(\pm 2^{\circ}\right)$ from B or a line on a bearing of $155^{\circ} \pm 2^{\circ}$ B1 for a point $5 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ from B or a line of length $5 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ from B

Paper 5523/03

No	Working	Answer	Mark	Notes
7		$\begin{gathered} 900 \\ 18 \\ 720 \\ 135 \end{gathered}$	3	B3 all correct (B2 for 2 or 3 correct) (B1 for 1 correct).
8	$2 \times 3=6$	e.g. $2 \times 3=6$	2	B2 for a correct example (B 1 for correctly multiplying any two prime numbers together or for $2 \times$ prime number not evaluated)
9			2	B2 for fully correct with 5 or more additional kites (B1 for a tessellation of 4 kites, 2 of which must be inverted, ignore remainder of diagram)
10 (a) (b)		$\begin{gathered} 31 \\ 4 n-1 \end{gathered}$	1	B1 for 31, accept 23,27, 31 B2 for $4 n-1$ oe (B1 for $4 n+k, k$ any integer)
11 (a) (b)	$r+2 r+5+2 r+4 r-3$ $9 r+2=65$	$9 r+2$ 7	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1 for intent to add the 4 terms, can be implied by sight of $9 r$ A1 cao M1 ft for " $9 r+2$ " $=65$ or for correct inverse operations A1 cao NB: algebra seen in (b) can attract marks in (a) if (a) left blank
12 (a) (b) (c)(i) (ii)		negative line of best fit ~ 22 ~ 2.8	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 cao B1 straight line passing between $((4,15)$ and $(4,20)$ and between $(1,40)$ and $(1,45)$ B1 ft from single line segment with negative gradient ± 1 full (2 mm) square B1 ft from single line segment with negative gradient ± 1 full $(2 \mathrm{~mm})$ square

Paper 5523/03

No	Working	Answer	Mark	Notes
13	$\begin{aligned} & 12 \times 10 \div 2=60 \\ & 5 \times 3=15 \\ & 60-15=45 \end{aligned}$	45	3	M1 for $12 \times 10 \div 2$ or 60 seen M1 for 5×3 or 15 seen A1 cao SC: B2 for answer of 105
(a) (b) (c)	$\begin{aligned} & \text { eg } 10 \%+5 \%+2.5 \%=£ 2+£ 1+£ 0.50 \\ & £ 20+£ 3.50 \\ & \\ & 75 \div(3+1+1)=15 \\ & 15 \times 3=45 \\ & 0.8 \times 200 \end{aligned}$	23.50 45 160	3 3 3	M1 for $£ 2, £ 1$ and $£ 0.50$ or $£ 3.50$ seen or $\frac{17.5}{100} \times 20$ oe M1 (dep) for " $£ 3.50 "+£ 20$ A1 for 23.5 (0) M1 for $75 \div(3+1+1)$ M1 (dep) for " 15 " $\times 3$ A1 cao M1 for 0.8×200 A1 for 160 , accept 160 out of 200 SC: B1 for $\frac{160}{200}$ or 160 in 200
15		386-420	3	M1 for 2 of 20, 4, 0.2 A1 for $\frac{80}{0.2}$ or $\frac{84}{0.2}$ or 100×4 or 105×4 or 20×20 or 21×20 A1 for answer in range $386-420$
16 (a) (b)	$\begin{aligned} & 2.3 \times 20 \\ & 480 \div 400 \end{aligned}$	$\begin{aligned} & 46 \\ & 1.2 \end{aligned}$	2 2	M1 for 2.3×20 A1 cao M1 for $480 \div 400$ A1 for 1.2 or equivalent reduced fraction
17 (a) (b) (c)(i) (ii) (d)	$x^{2}+5 x+3 x+15$	$\begin{gathered} \hline 20 \\ x(x+4) \\ m^{7} \\ t^{4} \\ x^{2}+8 x+15 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	B1 cao B1 cao B1 cao B1 cao M1 for 3 of 4 terms $x^{2}+5 x+3 x+15$, signs not needed A1 for $x^{2}+8 x+15$

Paper 5523/03

No	Working	Answer	Mark	Notes
18		Area Length None of these	3	B1 for Area only B1 for Length only B1 for None of these only
19 (a) (b)	Triangle with vertices at $(-1,3),(-3,3)$ and $(-3,4)$	reflection line $y=x$	2 2	```B1 for reflection B1 for line \(y=x\) (if B 0 then B 1 for line \(y=x\) drawn on diagram) M1 for correct orientation or for a rotation of \(90^{\circ}\) clockwise about (\(-1,1\)) \(\frac{\square}{2}\) A1 cao```
$20 \quad$ (a) (b)	$3 x<-6$	$\begin{gathered} -3,-2,-1,0,1 \\ x<-2 \end{gathered}$	2 2	B2 cao (-1 each error or omission) M1 for subtracting $2 x$ from both sides, condone sign error in 6 and use of $=,>, \leq, \geq$ A1 for $x<-2$, accept $x<-\frac{6}{3}$

