Paper 5525_06				
No	Working	Answer	Mark	Notes
1	P marked at top left and bottom		2	B2 for both correct (B1 for one correct) (-B 1 for each error if more than 2Ps)
2	$\begin{aligned} & 36 \div 9 \\ & 1 \text { part }=4 \\ & 8: 12: 16 \end{aligned}$	$\begin{array}{ll} \text { A } 8 \\ \text { B } 12 \\ \text { C } 16 \\ \hline \end{array}$	3	M1 for $36 \div(2+3+4)$ M1 (dep) $2 \times$ ' 4 ' or $3 \times{ }^{\prime} 4$ ' or $4 \times$ ' 4 ' A1 cao
3 (a) (b)		Overlay (a) Overlay(b)	2 2	B2 for correct triangle with arcs (B1 for correct triangle, no arcs) M1 for 2 pairs of correct intersecting arcs A1 for correct perpendicular bisector SC If no marks B1 for line within guidelines
4	No because when $n=6$ $6 n-1(=35)$ is not prime		2	B2 correctly showing when $n=6,35$ is obtained and identified oe or for correctly evaluating $6 n-1$ when n is 0 or negative. (B1 for correctly evaluating $6 n-1$ for at least 3 different whole number values of n or 35 oe with no working)
5	$\begin{aligned} & 3 \%=0.72 \\ & 1 \%=0.24 \\ & 100 \%=24 \\ & 103 \%=24.72 \end{aligned}$	24.72	3	M1 for $3 \%=0.72$ or $0.03 x=0.72$ M1 for $1 \%=0.24$ oe or 24 or 0.72×33.3 or $\frac{0.72}{3} \times 103$ A1 for 24.72 SC B2 for 24 seen
$6 \quad$ (a)(i) (ii) (iii) (iv) (b) (c) (d)	$x^{2}+3 x+2 x+6$	$\begin{gathered} x^{9} \\ p^{5} \\ 12 s^{6} t^{5} \\ q^{12} \\ 6 g-3 \\ 2 d^{2}+6 d \\ x^{2}+5 x+6 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	B1 cao B1 cao B2 cao (B1 for two of $12, s^{6}, t^{5}$ in a product) B1 cao B1 cao B2 cao (B1 for $2 d^{2}$ or $6 d$) B2 for $x^{2}+5 x+6$ (B1 for 3 out of 4 parts correct in working)

Paper 5525_06

No	Working	Answer	Mark	Notes
7	$\begin{aligned} & 4^{2}+6^{2} \\ & 16+36=52 \\ & \sqrt{52} \end{aligned}$	7.21	3	M1 for $4^{2}+6^{2}$ or $16+36$ or 52 M1 for $\sqrt{16+36}$ or $\sqrt{52}$ A1 for 7.21-7.212
$8 \quad \text { (a) }$ (b)	$\begin{aligned} & 8 \times 22.5 \\ & 3 \times 27.5 \\ & 7 \times 32.5 \\ & 7 \times 37.5 \\ & 15 \times 42.5 \\ & 1390 \div 40 \\ & \hline \end{aligned}$	$\begin{gathered} 35 \leq \mathrm{t}<40 \\ 34.75 \end{gathered}$	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	B1 for correct interval M1 for $f x$ consistently within interval including ends (allow 1 error) M1 (dep) consistently using midpoints . M1 (dep on $1^{\text {st }}$ M) for $\sum \mathrm{fx} \div \sum \mathrm{f}$ A1 for 34.75 or 34.7 or 34.8
9 (b)	$\begin{equation*} \frac{\sqrt{6.06}}{1.985} \tag{a} \end{equation*}$	$\begin{gathered} 1.24015 \\ 1.24 \end{gathered}$	2 1	B2 for $1.24015 \ldots . . .$. (B1 for sight of $2.46(\ldots$.$) or 1.985$ or $1.24(\ldots)$) B1 ft any answer to (a) correctly rounded to 2,3 or 4 significant figures
10		$\begin{gathered} \text { Rotation } \\ 180^{\circ} \\ \text { centre }(0,0) \end{gathered}$	3	B1 for rotation B1 for 180° or $\frac{1}{2}$ turn B1 for (0,0) Or B2 enlargement SF-1 B1 centre $(0,0)$ If no marks awarded SC B1 for correct reflections
11		$\begin{gathered} a=3 \\ b=-2 \end{gathered}$	3	M1 for a complete method which leads to a single equation in a or b only (allow 1 error) M1 (dep) substitute found value of a or b into one equation A1 cao SC B1 for one correct answer only if Ms not awarded, $a=3$ or $b=-2$

Paper 5525_06				
No	Working	Answer	Mark	Notes
(a) (b)	$\tan a=\frac{5}{6}$ Angle $a=39.8^{\circ}$ $\begin{aligned} & \sin 40^{\circ}=\frac{x}{10} \\ & x=10 \times \sin 40^{\circ} \end{aligned}$	39.8 6.43		M1 for $\tan (a=) \frac{5}{6}$ M1 for $a=\tan ^{-1}\left(\frac{5}{6}\right)$ or $\tan ^{-1}(0.83)$ to $\tan ^{-1}(0.834)$ (Allow $\tan ^{-1} 5 \div 6$) A1 for 39.8- 39.81 SC $0.692-0.695$ or $44.2-44.24$ seen gets M1M1 A0 M1 for $\sin 40=\frac{x}{10}$ M1 for $10 \times \sin 40$ A1 for $6.427-6.43$ (SC $7.45 \ldots$ or $5.87 \ldots$ seen gets M1M1 A0)
$13 \quad \text { (a)(i) }$ (ii) (b)		$\begin{gathered} \mathbf{p}+\mathbf{q} \\ \mathbf{q}-\mathbf{p} \\ \frac{1}{2}(\mathbf{p}+\mathbf{q}) \\ \hline \end{gathered}$	2 1	B1 cao $\mathbf{p}+\mathbf{q}$ B1 $\mathbf{q}-\mathbf{p}$ oe B1 $\frac{1}{2}(\mathbf{p}+\mathbf{q})$ oe
14	8×50^{2}	$20000 \mathrm{~cm}^{2}$	2	M1 for 50^{2} seen A1 for $20000 \mathrm{~cm}^{2}$ or $2 \mathrm{~m}^{2}$
$15 \quad \text { (a) }$ (b)	$\begin{aligned} & 4 p+p<8+7 \\ & p<3 \end{aligned}$	$\begin{gathered} -2,-1,0,1,2 \\ p<3 \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	B2 for all correct (B1 for $-1,0,1$ if seen in list , B1 for $-2,-1,1,2$) M1 for $4 p+p<8+7$ A1 cao
16		P and C Q and D R and B S and A	2	B2 for all correct (B1 for exactly 2 or exactly 3 correct)

Paper 5525_06

No	Working	Answer	Mark	Notes
17	$\begin{aligned} & m=\frac{-4}{4}=-1 \\ & c=3 \end{aligned}$	$y=-x+3$	4	M1 for clear attempt to find gradient of AB A1 for $m=-1$ B1 for $c=3$ in $y=m x+c m$ does not have to be numerical A1 for $y=-x+3$ oe SC B2 for $y=x+3$ seen B3 for $-x+3$ on its own B1 for $x+3$ on its own
(a) (b) (c)	$\begin{aligned} & \frac{3}{4} \times \frac{1}{3} \\ & \frac{3}{4} \times \frac{2}{3}+\frac{1}{4} \times \frac{1}{3} \\ & \frac{1}{2}+\frac{1}{12} \end{aligned}$	$\begin{array}{ccc} \hline & \frac{1}{4} & \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{4} & \\ & \frac{7}{12} & \end{array}$	2 2 2	B1 for $\frac{1}{4}$ correct on tennis B1 for $\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$ correct on snooker M1 for $\frac{3}{4} \times \frac{1}{3}$ A1 for $\frac{1}{4}$ oe M1 for $\frac{3}{4} \times{ }^{\prime \prime}\left(\frac{2}{3}\right)^{\prime}$ " or " $\left(\frac{1}{4}\right)$ " \times " $\left(\frac{1}{3}\right)$ " M1 $\frac{3}{4} \times\left(\frac{2}{3}\right)^{\prime \prime}+"\left(\frac{1}{4}\right) " \times "\left(\frac{1}{3}\right) "$ A1 for $\frac{7}{12}$ oe ($0.58 \ldots$) Or M2 for $1-\left(\frac{3}{4} \times \frac{1}{3}+\frac{1}{4} \times \frac{2}{3}\right)$ A1 for $\frac{7}{12}$ oe ($0.58 \ldots$)

Paper 5525_06

No	Working	Answer	Mark	Notes
19 (a)(i) (ii) (b)(i) (ii) (c)(i) (ii)	$26.95 \div 6.65$ $26.85 \div 6.75$	6.75 6.65 4.05263 3.97778 4 bounds agree to 1 sf		B1 cao B1 cao M1 for " 26.95 " \div " 6.65 " where $26.9<" 26.95$ " ≤ 26.95 and $6.65 \leq$ " 6.65 " <6.7 A1 for 4.05263 (....) If M1 not earned in (i), then M1 for ' 26.85 ' \div ' 6.75 ' where $26.85 \leq ' 26.85 '<26.9$ and $6.7<' 6.75 ' \leq 6.75$ A1 for 3.9777 (.....) B1 cao B1 for appropriate reason for 4
(a) (b) (c)	$\begin{aligned} & 27 x^{6} y^{12} \\ & 6 x^{2}+15 x-4 x-10 \\ & \frac{(x+2)(x+3)}{x(x+2)} \end{aligned}$	$\begin{gathered} 27 x^{6} y^{12} \\ 6 x^{2}+11 x-10 \\ \frac{x+3}{x} \end{gathered}$	2 2 2	B2 for fully correct B1 for 2 of $27, x^{6}, y^{12}$ correct in a 3 term product B2 for fully correct (B1 for 3 out of 4 terms correct in working including signs or 4 terms correct, incorrect signs) B2 for $\frac{x+3}{x}$ (B1 for $x(x+2)$ or $(x+2)(\mathrm{x}+3)$ seen $)$
21	$\begin{aligned} & x=\frac{5 \pm \sqrt{25-4 \times 1 \times-8}}{2} \\ & \frac{5 \pm \sqrt{57}}{2}=\frac{5 \pm 7.54983}{2} \\ & x=6.2749 \text { or } x=-1.2749 \end{aligned}$	$\begin{gathered} \hline 6.27 \text { or } \\ -1.27 \end{gathered}$	3	M1 for correct substitution into formula up to signs on b and c M1 for $\frac{5 \pm \sqrt{57}}{2}$ A1 6.27 to 6.275 and -1.27 to -1.275

Paper 5525_06

No	Working	Answer	Mark	Notes
(b)	$\begin{align*} & \frac{120}{360} \text { or } \frac{1}{3} \tag{a}\\ & \frac{120}{360} \times 2 \pi \times 10.4 \\ & \text { Area Sector }=\pi(10.4)^{2} \div 3=113.26488 \\ & \text { Area Triangle }=\frac{1}{2}(10.4)(10.4) \sin 120^{\circ} \\ & =46.8346 \\ & \text { Area segment }=66.43 \ldots \end{align*}$	$21.7-21.8$ 66.4	4	B1 for $\frac{120}{360}$ or $\frac{1}{3}$ seen M1 for $\frac{120}{360} \times 2 \pi \times 10.4$ A1 for 21.7-21.8 M1 for $\pi(10.4)^{2} \div 3$ or $\pi(10.4)^{2} \times \frac{120}{360}$ oe M1 for $\frac{1}{2}(10.4)(10.4) \sin 120^{\circ}$ or any other valid method for area triangle $O A C$ M1 (dep on at least 1 of the previous Ms) for area of sector area of triangle $O A C$, providing the answer is positive. A1 66.35-66.5
23	$\begin{aligned} & \frac{\sin A D B}{25}=\frac{\sin 28}{D B} \\ & D B=\frac{25 \times \sin 28}{\sin 26} \\ & D B=26.77 \\ & D C=26.77 \times \sin 54 \end{aligned}$	21.7	5	M1 for $\frac{\sin \text { " } 26 \text { " }}{25}=\frac{\sin 28}{D B}$ M1 for $D B=\frac{25 \times \sin 28}{\sin " 26 "}$ A1 for 26.7-26.8 M1 for $D C=" 26.7 " \times \sin 54$ A1 for 21.65-21.7 Or M1 for $\frac{\sin " 26^{\prime \prime}}{25}=\frac{\sin " 126^{\circ} "}{A D}$ oe M1 for $A D=\frac{25 \times \sin " 126^{\circ} "}{\sin 26^{\circ}}$ A1 for 46.1-46.2 M1 for " 46.1 " $\times \sin 28^{\circ}$ A1 for 21.65-21.7

Paper 5525_06		Working	Answer	Mark
No	Draw circle centre (0,0) radius 4 Draw a line through (1,2) Show two intersections	Fully correct explanation	3	M1 circle or semi-circle centre (0, 0) drawn or plotted with at least 8 points or stated A1 correct circle drawn or stated A1 straight line drawn through (1, 2) and cutting the (possibly freehand) circle at 2 distinct points or for stating that any straight line through (1,2) will cut the circle in 2 places as $(1,2)$ is inside the circle
24				

