2006_06_P-6

Paper 5525_06						
No	Working	Answer	Mark	Notes		
1	P marked at top left and bottom		2	B2 for both correct (B1 for one correct) (–B1 for each error if more than 2Ps)		
2	$36 \div 9$ 1 part = 4 8 : 12 : 16	A 8 B 12 C 16	3	M1 for $36 \div (2+3+4)$ M1 (dep) $2 \times 4'$ or $3 \times 4'$ or $4 \times 4'$ A1 cao		
3 (a)		Overlay (a)	2	B2 for correct triangle with arcs (B1 for correct triangle, no arcs)		
(b)		Overlay(b)	2	M1 for 2 pairs of correct intersecting arcs A1 for correct perpendicular bisector SC If no marks B1 for line within guidelines		
4	No because when $n = 6$ 6n - 1 (= 35) is not prime		2	 B2 correctly showing when n = 6, 35 is obtained and identified oe or for correctly evaluating 6n - 1 when n is 0 or negative. (B1 for correctly evaluating 6n - 1 for at least 3 different whole number values of n or 35 oe with no working) 		
5	3% = 0.72 1% = 0.24 100% = 24 103% = 24.72	24.72	3	M1 for 3% = 0.72 or $0.03x = 0.72$ M1 for 1% = 0.24 oe or 24 or 0.72×33.3 or $\frac{0.72}{3} \times 103$ A1 for 24.72 SC B2 for 24 seen		
6 (a)(i)		x ⁹	1	B1 cao		
(ii)		p^5	1	B1 cao		
(iii)		$12 s^6 t^5$	2	B2 cao (B1 for two of 12, s^6 , t^5 in a product)		
(iv)		q^{12}	1	B1 cao		
(b)		6g – 3	1	B1 cao		
(c)		$2d^2 + 6d$	2	B2 cao (B1 for $2d^2$ or $6d$)		
(d)	$x^2 + 3x + 2x + 6$	$x^2 + 5x + 6$	2	B2 for $x^2 + 5x + 6$ (B1 for 3 out of 4 parts correct in working)		

Pap	Paper 5525_06						
	No	Working	Answer	Mark	Notes		
7		$ \begin{array}{r} 4^2 + 6^2 \\ 16 + 36 = 52 \\ \sqrt{52} \end{array} $	7.21	3	M1 for $4^2 + 6^2$ or $16 + 36$ or 52 M1 for $\sqrt{16 + 36}$ or $\sqrt{52}$ A1 for 7.21- 7.212		
8	(a)		$35 \le t < 40$	1	B1 for correct interval		
	(b)	$8 \times 22.5 3 \times 27.5 7 \times 32.5 7 \times 37.5 15 \times 42.5 1390 \div 40$	34.75	4	M1 for <i>fx</i> consistently within interval including ends (allow 1 error) M1 (dep) consistently using midpoints . M1 (dep on 1 st M) for $\sum fx \div \sum f$ A1 for 34.75 or 34.7 or 34.8		
9	(a)	$\frac{\sqrt{6.06}}{1.985}$	1.24015	2	B2 for 1.24015 (B1 for sight of 2.46() or 1.985 or 1.24())		
	(b)		1.24	1	B1 ft any answer to (a) correctly rounded to 2, 3 or 4 significant figures		
10			Rotation 180° centre (0,0)	3	B1 for rotation B1 for 180° or $\frac{1}{2}$ turn B1 for $(0,0)$ Or B2 enlargement SF – 1 B1 centre $(0,0)$ If no marks awarded SC B1 for correct reflections		
11			a = 3 $b = -2$	3	M1 for a complete method which leads to a single equation in <i>a</i> or <i>b</i> only (allow 1 error) M1 (dep) substitute found value of <i>a</i> or <i>b</i> into one equation A1 cao SC B1 for one correct answer only if Ms not awarded, a=3 or $b=-2$		

Раре	Paper 5525_06						
	No	Working	Answer	Mark	Notes		
12	(a)	$\tan a = \frac{5}{6}$			M1 for $\tan(a=)\frac{5}{6}$		
		Angle $a = 39.8^{\circ}$	39.8		M1 for $a = \tan^{-1}(\frac{5}{6})$ or $\tan^{-1}(0.83)$ to $\tan^{-1}(0.834)$		
					(Allow $\tan^{-1} 5 \div 6$) A1 for 39.8- 39.81		
					SC $0.692 - 0.695$ or $44.2 - 44.24$ seen gets M1M1 A0		
	(b)	$\sin 40^{\circ} = \frac{x}{10}$	6.43		M1 for $\sin 40 = \frac{x}{10}$		
		$x = 10 \times \sin 40^{\circ}$			M1 for $10 \times \sin 40$		
					A1 for 6.427 – 6.43 (SC 7.45 or 5.87 seen gets M1M1 A0)		
13	(a)(i)		p + q	2	$B1 \text{ cao } \mathbf{p} + \mathbf{q}$		
	(ii)		$\mathbf{q} - \mathbf{p}$		B1 $\mathbf{q} - \mathbf{p}$ oe		
	(b)		$\frac{1}{2}(\mathbf{p}+\mathbf{q})$	1	B1 $\frac{1}{2}(p+q)$ oe		
14		8×50^2	20 000cm ²	2	M1 for 50 ² seen		
					A1 for 20 000cm ² or 2 m ²		
15	(a)		-2, -1, 0, 1, 2	2	B2 for all correct (P1 for 1.0.1 if soon in list P1 for 2 1.1.2.)		
	(b)	4p + p < 8 + 7	<i>p</i> < 3	2	(B1 for $-1,0,1$ if seen in list, B1 for $-2, -1, 1, 2$) M1 for $4p + p < 8 + 7$		
	(-)	p < 3	I ····		A1 cao		
16		~	P and C Q and D R and B S and A	2	B2 for all correct (B1 for exactly 2 or exactly 3 correct)		

Paper	Paper 5525_06					
N	0	Working	Answer	Mark	Notes	
17		$m = \frac{-4}{4} = -1$ $c = 3$	y = -x + 3	4	M1 for clear attempt to find gradient of AB A1 for $m = -1$ B1 for $c = 3$ in $y = mx + c$ m does not have to be numerical A1 for $y = -x + 3$ oe SC B2 for $y = x + 3$ seen B3 for $-x + 3$ on its own B1 for $x + 3$ on its own	
	(a) (b) (c)	$\frac{3}{4} \times \frac{1}{3}$ $3 2 1 1$	$ \begin{array}{c} \frac{1}{4} \\ \frac{2}{3} \frac{1}{3} \frac{2}{3} \\ \frac{1}{4} \\ 7 \end{array} $	2	B1 for $\frac{1}{4}$ correct on tennis B1 for $\frac{2}{3}$, $\frac{1}{3}$, $\frac{2}{3}$ correct on snooker M1 for $\frac{3}{4} \times \frac{1}{3}$ A1 for $\frac{1}{4}$ oe	
		$\frac{\frac{3}{4} \times \frac{2}{3} + \frac{1}{4} \times \frac{1}{3}}{\frac{1}{2} + \frac{1}{12}}$	$\frac{7}{12}$	3	M1 for $\frac{3}{4} \times "\left(\frac{2}{3}\right)"$ or " $\left(\frac{1}{4}\right)" \times "\left(\frac{1}{3}\right)"$ M1 $\frac{3}{4} \times "\left(\frac{2}{3}\right)" + "\left(\frac{1}{4}\right)" \times "\left(\frac{1}{3}\right)"$ A1 for $\frac{7}{12}$ oe (0.58) Or M2 for $1 - \left(\frac{3}{4} \times \frac{1}{3} + \frac{1}{4} \times \frac{2}{3}\right)$ A1 for $\frac{7}{12}$ oe (0.58)	

Paper 5525_06						
	No	Working	Answer	Mark	Notes	
19	(a)(i)		6.75	1	B1 cao	
	(ii)		6.65	1	B1 cao	
	(b)(i)	26.95 ÷ 6.65	4.05263	3	M1 for "26.95" \div "6.65" where 26.9 $<$ "26.95" \le 26.95 and 6.65 \le "6.65" $<$ 6.7 A1 for 4.05263 ()	
	(ii)	26.85 ÷ 6.75	3.97778		If M1 not earned in (i), then M1 for $26.85 \div 6.75$ where $26.85 \le 26.85 \le 26.9$ and $6.7 \le 6.75 \le 6.75$ A1 for 3.9777 ()	
	(c)(i)		4	2	B1 cao	
	(ii)		bounds agree to 1sf		B1 for appropriate reason for 4	
20	(a)	$27x^6y^{12}$	$27x^6y^{12}$	2	B2 for fully correct B1 for 2 of 27, x^6 , y^{12} correct in a 3 term product	
	(b)	$6x^2 + 15x - 4x - 10$	$6x^2 + 11x - 10$	2	B2 for fully correct (B1 for 3 out of 4 terms correct in working including signs or 4 terms correct, incorrect signs)	
	(c)	$\frac{(x+2)(x+3)}{x(x+2)}$	$\frac{x+3}{x}$	2	B2 for $\frac{x+3}{x}$	
21		$x = \frac{5 \pm \sqrt{25 - 4 \times 1 \times -8}}{2}$	6.27 or -1.27	3	(B1 for $x(x + 2)$ or $(x + 2)(x + 3)$ seen) M1 for correct substitution into formula up to signs on <i>b</i> and <i>c</i>	
		$\frac{5\pm\sqrt{57}}{2} = \frac{5\pm7.54983}{2}$			M1 for $\frac{5\pm\sqrt{57}}{2}$	
		x = 6.2749 or $x = -1.2749$			A1 6.27 to 6.275 and -1.27 to -1.275	

Paper 5525_	Paper 5525_06						
No	Working	Answer	Mark	Notes			
	-	Answer 21.7 – 21.8 66.4 21.7	Mark 3 4 5	B1 for $\frac{120}{360}$ or $\frac{1}{3}$ seen M1 for $\frac{120}{360} \times 2\pi \times 10.4$ A1 for 21.7 - 21.8 M1 for $\pi (10.4)^2 \div 3$ or $\pi (10.4)^2 \times \frac{120}{360}$ oe M1 for $\frac{1}{2} (10.4) (10.4) \sin 120^\circ$ or any other valid method for area triangle <i>OAC</i> M1 (dep on at least 1 of the previous Ms) for area of sector – area of triangle <i>OAC</i> , providing the answer is positive. A1 66.35 – 66.5 M1 for $\frac{\sin''26''}{25} = \frac{\sin 28}{DB}$ M1 for $DB = \frac{25 \times \sin 28}{\sin''26''}$ A1 for 26.7 – 26.8 M1 for $DC = "26.7" \times \sin 54$ A1 for 21.65 – 21.7 Or			
				M1 for $\frac{\sin''26''}{25} = \frac{\sin''126^{\circ''}}{AD}$ oe M1 for $AD = \frac{25 \times \sin''126^{\circ''}}{\sin 26^{\circ}}$ A1 for 46.1 - 46.2 M1 for "46.1" × sin 28° A1 for 21.65 - 21.7			

Paper 5525_06						
No	Working	Answer	Mark	Notes		
24	Draw circle centre (0,0) radius 4 Draw a line through (1,2) Show two intersections	Fully correct explanation	3	M1 circle or semi-circle centre (0, 0) drawn or plotted with at least 8 points or stated A1 correct circle drawn or stated A1 straight line drawn through (1, 2) and cutting the (possibly freehand) circle at 2 distinct points or for stating that any straight line through (1,2) will cut the circle in 2 places as (1,2) is inside the circle		