Paper 5525_05

No	Working	Answer	Mark	Notes
1 (a) (b)	$\begin{aligned} & x^{2}=\frac{108}{3} \\ & 2 \times 54=2 \times 2 \times 27 \end{aligned}$	$2 \times 2 \times 3 \times 3 \times 3$	2 3	M1 $\left(x^{2}=\right) \frac{108}{3} \quad(=36) \quad$ or 36 seen A1 cao 6 or -6 or both. Also accept $\sqrt{36}$ M1 for attempt at continual prime factorisation (at least 2 correct steps); could be shown as a factor tree. A1 all 5 correct prime factors and no others A1 $2 \times 2 \times 3 \times 3 \times 3$ or $2^{2} \times 3^{3}$ oe
(a) (b) (c)		$5,-1,1$ $3.6,-0.6$	2 2 2	B2 all three correct (B1 one or two correct) B1ft points plotted correctly ± 1 full square B1 smooth curve through their plotted points provided at least B1 awarded in (a). B2 for $x=3.4$ to 3.8 and -0.8 to -0.4 otherwise $\mathrm{ft} \pm 1$ full square depends on at least B1 in (b) (B1 for one value or line $\mathrm{y}=3$ seen)
3	10.5×5	52.5 g	2	$\begin{aligned} & \text { M1 } 10.5 \times 5 \\ & \text { A1 cao } \\ & \hline \end{aligned}$
4		overlay	4	M1 quarter "circle" drawn centre A inside rectangle (ignore lines outside the rectangle) A1 radius $4 \mathrm{~cm} \pm 2 \mathrm{~mm}$ B1 line drawn $1 \mathrm{~cm} \pm 2 \mathrm{~mm}$ from $D C$. B1 ft (dep on two loci attempts drawn) region shaded
5		$\frac{26}{60}$	2	M1 $(16+10) \div ' 60 '$ or 26 seen or $\frac{16}{60}$ A1 oe
6	$\frac{400 \times 6}{0.2}=\frac{2400}{0.2}$	12000-12500	3	M1 two of 400, 6, 0.2 A1 $\frac{2400}{0.2}$ or $\frac{2460}{0.2}$ or 2000×6 or 2050×6 or 400×30 or 410×30 A1 answer in range $12000-12500$

Paper 5525_05

No	Working				Answer	Mark	Notes
7 (a) (b)					$\begin{aligned} & 126.5 \mathrm{~g} \\ & 127.5 \mathrm{~g} \end{aligned}$	1	B1 cao B1 127.5 or $127.4 \dot{9}$ or $127.49 \ldots$ or 127.499
8	How man last week	2	3	you eaten in the More than 3	Include a time period Proper response boxes	2	B1 include a time period B1 at least 3 numeric response boxes
9 (a) (b) (c)					$\begin{aligned} & 4.56 \times 10^{5} \\ & 3.4 \times 10^{-4} \\ & 1.6 \times 10^{8} \end{aligned}$	1	B1 cao B1 cao B1 cao
$10 \quad \text { (a) }$ (b)					$\begin{gathered} (x+2)(x+4) \\ -2,-4 \end{gathered}$	2 1	M1 $(x \pm 2)(x \pm 4)$ A1 cao B1 ft from (a) or $-2,-4$
$11 \quad \text { (a) }$ (b)	$\mathrm{SF}=1.5$ $45 \times \frac{8}{12}$				$\begin{aligned} & 39 \mathrm{~cm} \\ & 30 \mathrm{~cm} \end{aligned}$	2 2	$\mathrm{M} 1 \mathrm{SF}=\frac{12}{8}, \frac{8}{12}, 1.5,0.6 \ldots$ oe A1 cao M1 $45 \times \frac{8}{12}, 45 \div \frac{12}{8}$ oe A1 cao
12 (a) (b)					$\begin{aligned} & x=3, y=2 \\ & (4,2),(5,1) \\ & (5,2),(5,3) \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	B1 cao B3 all correct and none incorrect B2 at least 2 correct and not more than 4 points B1 line $x=6$ drawn or one point correct

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525_05} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \[
\begin{array}{ll}
13 \& \text { (a) } \\
\& \text { (b) }
\end{array}
\] \& He has taken it from this year instead of last year
\[
\frac{240}{1.2}
\] \& 200 \& 1
2 \& \begin{tabular}{l}
B1 Reason or appropriate calculation \\
M1 \(\frac{240}{1.2}\) oe \\
A1 cao
\end{tabular} \\
\hline \begin{tabular}{l}
14 (a) \\
(b) \\
(c)
\end{tabular} \& \& \begin{tabular}{l}
\[
\begin{aligned}
\& 12,33,69,92, \\
\& 100
\end{aligned}
\] \\
62-64 hours
\end{tabular} \& 1
2

2 \& | B1 cao |
| :--- |
| B1 ft for 4 or 5 points plotted correctly ± 1 full 2 mm square at the end of interval dep on sensible table (condone one addition error) |
| B1 dep for points joined by curve or line segments provided no gradient is negative. Ignore any point of graph outside range of their points. |
| SC: B1 if 4 or 5 points plotted not at end but consistent within each interval and joined. |
| B1 62-64 otherwise ft from cumulative freq graph B1 for hours |

\hline | 15 (a) |
| :--- |
| (b) | \& 90

$70 \div 2$ \& $$
90^{\circ}
$$ \& 2

2 \& | B1 90° |
| :--- |
| B1 angle in semi circle $\left(=90^{\circ}\right)$ |
| B1 35° or 325° |
| B1 angle at centre $=$ twice angle at circumference OR |
| B1 angle on a straight line with isosceles triangle |

\hline
\end{tabular}

Paper 5525_05				
No	Working	Answer	Mark	Notes
(a) (b)	$\begin{aligned} T & =k M \\ k & =\frac{600}{250} \\ T & =\frac{600}{250} \times 400 \\ T & =\frac{K}{P} \\ T & =\frac{1400 \times 360}{900} \end{aligned}$	960 560	3 3	M1 for $T=k m$ or $\frac{600}{250}=\frac{T}{400}$ oe M1 for $(k=) \frac{600}{250}(=2.4)$ or $(T=) 400 \times \frac{600}{250}$ A1 cao M1 for $T=\frac{K}{P}$ or $\frac{T}{1400}=\frac{360}{900}$ oe M1 for $(K=) 1400 \times 360$ or $360=\frac{K}{1400}$ or $(\mathrm{K}=) 504000$ or $(T=) \frac{360 \times 1400}{900}$ oe A1 cao
17 (a) (b)	$\begin{aligned} & R=(6,10), S=(2,7) \\ & \rightarrow \\ & Q S=\binom{2}{7}-\binom{6}{6} \end{aligned}$	$\binom{4}{3}$ $\binom{-4}{1}$	2	M1 subtraction of coordinates or position vectors or $\binom{4}{y}$ or $\binom{x}{3}$, where x and y are integers A1 cao SC: B1 for $\binom{-4}{-3}$ or $\binom{3}{4}$ B2 for $\binom{-4}{1}$ B1 for $\binom{-4}{y}$ or $\binom{x}{1}$, where x and y are integers

Paper 5525_05				
No	Working	Answer	Mark	Notes
18 (a) (b)	$\begin{aligned} & \frac{3 x}{x}+\frac{3 x}{2 x}=2 x \\ & (y-1)^{2}=\frac{9}{4} \\ & y-1= \pm \frac{3}{2} \end{aligned}$	$x=\frac{9}{4}$ $y=\frac{5}{2}, \quad-\frac{1}{2}$	2 3	M1 for $\frac{6+3}{2 x}$ or $\frac{3}{x} \times x+\frac{3}{2 x} \times x=2 \times x$ or $\frac{6 x+3 x}{2 x^{2}}=2$ A1 $\frac{9}{4}$ oe M1 $(y-1)^{2}=" \frac{9}{4}$ "or $4 y^{2}-8 y-5=0$ oe A1 cao $\frac{5}{2}$ oe A1 cao $-\frac{1}{2}$ oe
$\begin{equation*} 19 \tag{a} \end{equation*}$ (b) (c)	Area up to $12.5=220 x$ Area above $21=156 x$ Frequency $=\frac{156 x}{220 x} \times 110$	Heights 24,32 Freqs 40, 20, 15 78	2 2 3	B1 cao for bar from $15-17.5$, height $24 \times 2 \mathrm{~mm}$ squares B1 cao for bar from 17.5-20, height $32 \times 2 \mathrm{~mm}$ square B2 cao for all 3 correct (B1 for any 1 or 2 correct) M1 for attempt to find area upto 12.5 and area above 21 consistantly M1 for $\frac{156}{220} \times 110$ or $\frac{6.24}{8.8} \times 110$ or $156 \times \frac{110}{220}$ oe A1 78 cao SC: If no marks earned B1 for $2 \mathrm{~mm}^{2}=1$ person oe

Paper 5525_05				
No	Working	Answer	Mark	Notes
(b) (c) (d)	$\begin{aligned} & 8 \times \sqrt{4} \times \sqrt{2} \\ & \frac{1}{8 \sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}} \\ & =\frac{\sqrt{8}}{64}=\frac{\sqrt{2}}{32} \end{aligned}$	2 1.5 $16 \sqrt{2}$ $\frac{\sqrt{2}}{32}$	1 1 2 2	B1 cao B1 1.5 oe M1 $(\sqrt{8}=) \sqrt{4 \times 2}$ or $\sqrt{2} \times \sqrt{2} \times \sqrt{2}$ or $\left(2^{3}\right)^{\frac{3.3}{2}}$ A1 for $16 \sqrt{2}$ (accept $m=16$) M1 $\frac{1}{8 \sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}}$ or $\frac{1}{8 \sqrt{8}} \times \frac{8 \sqrt{8}}{8 \sqrt{8}}$ or $\frac{1}{" 16 \sqrt{2} "} \times \frac{\sqrt{2}}{\sqrt{2}}$ oe or $\frac{1}{8 \sqrt{8}} \times \frac{\sqrt{2}}{\sqrt{2}}$ A1 for $\frac{\sqrt{2}}{32} \quad(\operatorname{accept} p=32)$
$\begin{equation*} 21 \tag{a} \end{equation*}$ (b)	$B C=C E$ equal sides $C F=C D$ equal sides $B C F=D C E=150^{\circ}$ $B F C$ is congruent to $E C D$ (SAS) So $B F=E D$ (congruent triangles) $B F=E G$ (opp sides of parallelogram)		3 2	B1 for either $B C=C D$ or $B C=C E$ $C F=C E$ or $C F=C D$ B1 for $B C F=D C E=150^{\circ}$ or correct reason B1 for proof of congruence B1 $B F=E G$ or $B F=E D$ B1 fully correct proof
22	$\begin{aligned} & (n+a) P=n^{2}+a \\ & n P+a P=n^{2}+a \\ & a(P-1)=n^{2}-n P \end{aligned}$	$a=\frac{n^{2}-n P}{P-1}$	4	$\mathrm{M} 1(n+a) P=n^{2}+a$ M1 $n P+a P=n^{2}+a$ M1 $a(P-1)=n^{2}-n P$ or $a(1-P)=n P-n^{2}$ A1 for $a=\frac{n^{2}-n P}{P-1}$ oe

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper 5525_05} \\
\hline No \& Working \& Answer \& Mark \& Notes \\
\hline \begin{tabular}{l}
23 (a) \\
(b)(i) \\
(b)(ii)
\end{tabular} \& \begin{tabular}{l}
\[
(n-a)(n+a-(n-a))
\] \\
or
\[
n^{2}-a^{2}-\left(n^{2}-2 a n+a^{2}\right)
\]
\end{tabular} \& \begin{tabular}{l}
\[
\begin{gathered}
(2 x-3)(x-2) \\
2 a(n-a)
\end{gathered}
\] \\
\(a\) and \(n-a\) are integers \(2 \times n \times(n-a)\) is even
\end{tabular} \& 2

4 \& | B2 cao |
| :--- |
| B1 $(2 x-a)(x-b)$, where $a b=6$ |
| M1 for $(n-a)(n+a)$ seen |
| A1 cao |
| or M1 for $n^{2}-2 a n+a^{2}$ seen |
| A1 cao |
| M1 dep for identifying $n-a$ as an integer or multiplying by 2 gives an even number |
| or |
| M1 dep for identifying $a n$ or a^{2} as an integer, or for the difference of two even numbers is an even number A1 correct proof |

\hline | $24 \quad$ (a)(i) |
| :--- |
| (ii) |
| (iii) |
| (b) |
| (c) | \& \& | $\begin{gathered} (0,-1) \\ (2,-3) \\ (1,-1) \\ y=\mathrm{f}(-x) \end{gathered}$ |
| :--- |
| Translation by +2 parallel to the y axis | \& | 3 |
| :--- |
| 1 |
| 1 | \& | B1 cao |
| :--- |
| B1 cao |
| B1 cao |
| B1 cao |
| B1 for translation by $\binom{0}{2}$ |

\hline
\end{tabular}

