2006_06_P-5

Рар	Paper 5525_05							
	No	Working	Answer	Mark	Notes			
1	(a)	$x^2 = \frac{108}{3}$	6	2	M1 $(x^2 =)\frac{108}{3}$ (=36) or 36 seen			
	(b)	$2 \times 54 = 2 \times 2 \times 27$	2×2×3×3×3	3	A1 cao 6 or -6 or both. Also accept $\sqrt{36}$ M1 for attempt at continual prime factorisation (at least 2 correct steps); could be shown as a factor tree. A1 all 5 correct prime factors and no others A1 2×2×3×3×3 or 2 ² ×3 ³ oe			
2	(a)		5, -1, 1	2	B2 all three correct			
	(b)			2	(B1 one or two correct) B1ft points plotted correctly ± 1 full square B1 smooth curve through their plotted points provided			
	(c)		3.6, -0.6	2	at least B1 awarded in (a). B2 for $x=3.4$ to 3.8 and -0.8 to -0.4 otherwise ft ± 1 full square depends on at least B1 in (b) (B1 for one value or line y= 3 seen)			
3		10.5×5	52.5g	2	M1 10.5×5 A1 cao			
4			overlay	4	M1 quarter "circle" drawn centre A inside rectangle (ignore lines outside the rectangle) A1 radius 4 cm±2mm B1 line drawn 1 cm ±2mm from <i>DC</i> . B1 ft (dep on two loci attempts drawn) region shaded			
5			$\frac{26}{60}$	2	M1 $(16+10)$ ÷'60' or 26 seen or $\frac{16}{60}$ A1 oe			
6		$\frac{400 \times 6}{0.2} = \frac{2400}{0.2}$	12000-12500	3	M1 two of 400, 6, 0.2 A1 $\frac{2400}{0.2}$ or $\frac{2460}{0.2}$ or 2000×6 or 2050×6 or 400×30 or 410×30 A1 answer in range $12000 - 12500$			

Рар	Paper 5525_05						
	No	Working	Answer	Mark	Notes		
7	(a)		126.5g	1	B1 cao		
	(b)		127.5g	1	B1 127.5 or 127.49 or 127.49 or 127.499		
8		How many pizzas have you eaten in the last week?	Include a time period Proper response boxes	2	B1 include a time period B1 at least 3 numeric response boxes		
9	(a)		4.56×10^{5}	1	B1 cao		
	(b)		3.4×10^{-4}	1	B1 cao		
	(c)		1.6×10^{8}	1	B1 cao		
10	(a)		(x+2)(x+4)	2	M1 $(x \pm 2)(x \pm 4)$ A1 cao		
	(b)		-2, -4	1	B1 ft from (a) or -2, -4		
11	(a)	SF = 1.5	39 cm	2	M1 SF = $\frac{12}{8}$, $\frac{8}{12}$, 1.5, 0.6 oe		
	(b)	$45 \times \frac{8}{12}$	30 cm	2	A1 cao M1 45× $\frac{8}{12}$, 45÷ $\frac{12}{8}$ oe A1 cao		
12	(a)		x = 3, y = 2	1	B1 cao		
	(b)		(4,2), (5,1) (5,2), (5,3)	3	B3 all correct and none incorrect B2 at least 2 correct and not more than 4 points B1 line $x= 6$ drawn or one point correct		

Pape	Paper 5525_05						
	No	Working	Answer	Mark	Notes		
13	(a)	He has taken it from this year instead of last year		1	B1 Reason or appropriate calculation		
	(b)	$\frac{240}{1.2}$	200	2	M1 $\frac{240}{1.2}$ oe		
					A1 cao		
14	(a)		12, 33, 69, 92, 100	1	B1 cao		
	(b)			2	 B1 ft for 4 or 5 points plotted correctly ± 1 full 2 mm square at the end of interval dep on sensible table (condone one addition error) B1 dep for points joined by curve or line segments provided no gradient is negative . Ignore any point of graph outside range of their points. SC: B1 if 4 or 5 points plotted not at end but consistent within each interval and joined . 		
	(c)		62- 64 hours	2	B1 62-64 otherwise ft from cumulative freq graph B1 for hours		
15	(a)	90	90°	2	B1 90 [°] B1 angle in semi circle (= 90°)		
	(b)	70÷2	35°	2	B1 35° or 325° B1 angle at centre = twice angle at circumference OR B1 angle on a straight line <i>with</i> isosceles triangle		

Paper 5525	Paper 5525_05						
No	No Working		Mark	Notes			
16 (a)	$T = kM$ $k = \frac{600}{250}$ $T = \frac{600}{250} \times 400$	960	3	M1 for $T = km$ or $\frac{600}{250} = \frac{T}{400}$ oe M1 for $(k =) \frac{600}{250} (=2.4)$ or $(T =)400 \times \frac{600}{250}$ A1 cao			
(b)	$T = \frac{K}{P}$ $T = \frac{1400 \times 360}{900}$	560	3	M1 for $T = \frac{K}{P}$ or $\frac{T}{1400} = \frac{360}{900}$ oe M1 for $(K =)1400 \times 360$ or $360 = \frac{K}{1400}$ or $(K =) 504000$ or $(T =) \frac{360 \times 1400}{900}$ oe A1 cao			
17 (a)		$\begin{pmatrix} 4\\3 \end{pmatrix}$	2	M1 subtraction of coordinates or position vectors or $\begin{pmatrix} 4 \\ y \end{pmatrix}$ or $\begin{pmatrix} x \\ 3 \end{pmatrix}$, where x and y are integers A1 cao SC: B1 for $\begin{pmatrix} -4 \\ -3 \end{pmatrix}$ or $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$			
(b)	R = (6, 10), S = (2,7) $\rightarrow = \begin{pmatrix} 2 \\ 7 \end{pmatrix} - \begin{pmatrix} 6 \\ 6 \end{pmatrix}$	$\begin{pmatrix} -4\\1 \end{pmatrix}$		B2 for $\begin{pmatrix} -4\\ 1 \end{pmatrix}$ B1 for $\begin{pmatrix} -4\\ y \end{pmatrix}$ or $\begin{pmatrix} x\\ 1 \end{pmatrix}$, where x and y are integers			

Paper 55	Paper 5525_05						
No	Working	Answer	Mark	Notes			
18 (a)	$\frac{3x}{x} + \frac{3x}{2x} = 2x$	$x = \frac{9}{4}$	2	M1 for $\frac{6+3}{2x}$ or $\frac{3}{x} \times x + \frac{3}{2x} \times x = 2 \times x$ or $\frac{6x+3x}{2x^2} = 2$			
				A1 $\frac{9}{4}$ oe			
(b)	$(y-1)^2 = \frac{9}{4}$ $y-1 = \pm \frac{3}{2}$	$y = \frac{5}{2}, -\frac{1}{2}$	3	M1 $(y-1)^2 = "\frac{9}{4}$ " or $4y^2 - 8y - 5 = 0$ oe			
	$y - 1 = \pm \frac{3}{2}$			A1 cao $\frac{5}{2}$ oe			
				A1 cao $-\frac{1}{2}$ oe			
19 (a)		Heights 24,32	2	B1 cao for bar from $15 - 17.5$, height $24 \times 2mm$ squares B1 cao for bar from $17.5 - 20$, height $32 \times 2mm$ square			
(b)		Freqs 40, 20, 15	2	B2 cao for all 3 correct (B1 for any 1 or 2 correct)			
(c)	Area up to $12.5 = 220x$ Area above $21 = 156x$ Frequency $= \frac{156x}{220x} \times 110$	78	3	M1 for attempt to find area upto 12.5 and area above 21 consistantly M1 for $\frac{156}{220} \times 110$ or $\frac{6.24}{8.8} \times 110$ or $156 \times \frac{110}{220}$ oe			
				A1 78 cao SC: If no marks earned B1 for $2mm^2 = 1$ person oe			

Раре	Paper 5525_05						
No Working		Working	Answer N		Notes		
20	(a)		2	1	B1 cao		
	(b)		1.5	1	B1 1.5 oe		
	(c)	$8 \times \sqrt{4} \times \sqrt{2}$	$16\sqrt{2}$	2	M1 ($\sqrt{8}$ =) $\sqrt{4 \times 2}$ or $\sqrt{2} \times \sqrt{2} \times \sqrt{2}$ or $(2^3)^{\frac{n^3}{2}}$		
					A1 for $16\sqrt{2}$ (accept $m = 16$)		
	(d)	$\frac{1}{8\sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}}$	$\frac{\sqrt{2}}{32}$	2	M1 $\frac{1}{8\sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}}$ or $\frac{1}{8\sqrt{8}} \times \frac{8\sqrt{8}}{8\sqrt{8}}$ or $\frac{1}{"16\sqrt{2}"} \times \frac{\sqrt{2}}{\sqrt{2}}$ oe		
		$\begin{vmatrix} \frac{1}{8\sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}} \\ = \frac{\sqrt{8}}{64} = \frac{\sqrt{2}}{32} \end{vmatrix}$			or $\frac{1}{8\sqrt{8}} \times \frac{\sqrt{2}}{\sqrt{2}}$		
					A1 for $\frac{\sqrt{2}}{32}$ (accept $p = 32$)		
21	(a)	BC = CE equal sides CF = CD equal sides $BCF = DCE = 150^{\circ}$		3	B1 for either $BC = CD$ or $BC = CE$ CF = CE or $CF = CDB1 for BCF = DCE = 150^{\circ} or correct reason$		
	(b)	<i>BFC</i> is congruent to <i>ECD</i> (SAS) So <i>BF=ED</i> (congruent triangles) BF = EG (opp sides of parallelogram)		2	B1 for proof of congruence B1 $BF = EG$ or $BF = ED$ B1 fully correct proof		
22		$(n+a)P = n^2 + a$	$a = \frac{n^2 - nP}{P - 1}$	4	$M1(n+a)P = n^2 + a$		
		$nP + aP = n^2 + a$	$a = \frac{1}{P-1}$		M1 $nP + aP = n^2 + a$		
		$a(P-1) = n^2 - nP$			M1 $a(P-1) = n^2 - nP$ or $a(1-P) = nP - n^2$		
					A1 for $a = \frac{n^2 - nP}{P - 1}$ oe		

Раре	Paper 5525_05						
	No	Working	Answer	Mark	Notes		
23	(a) (b)(i)	(n-a)(n+a-(n-a))	(2x-3)(x-2) $2a(n-a)$	2	B2 cao B1 $(2x-a)(x-b)$, where $ab = 6$ M1 for $(n-a)(n+a)$ seen		
		or $n^2 - a^2 - (n^2 - 2an + a^2)$	24(11-4)		A1 cao or M1 for $n^2 - 2an + a^2$ seen A1 cao		
	(b)(ii)		a and n-a are integers $2 \times n \times (n-a)$ is even	4	M1 dep for identifying $n - a$ as an integer or multiplying by 2 gives an even number or M1 dep for identifying <i>an</i> or a^2 as an integer, or for the difference of two even numbers is an even number A1 correct proof		
24	(a)(i)		(0,-1)	3	B1 cao		
	(ii)		(2,-3)		B1 cao		
	(iii)		(1,-1)		B1 cao		
	(b)		y = f(-x)	1	B1 cao		
	(c)		Translation by $+ 2$ parallel to the y axis	1	B1 for translation by $\begin{pmatrix} 0\\2 \end{pmatrix}$		