June 2003

Paper 55	06			
No	Working	Answer	Mark	Notes
1 (a	$V = \pi \times 4^2 \times 10$	$502 - 503 \text{ cm}^3$	2	M1 for $\pi \times 4^2 \times 10$
				A1 502 – 503
(b	$P^{2} = 10^{2} + 8^{2}$ $P = \sqrt{164}$	$\sqrt{164} < 13$	3	M1 for sight of correct right angled triangle
	$P = \sqrt{164}$			M1 for $10^2 + 8^2$
	1 101			A1 for conclusion based on a correct calculation
				Or 12.8 seen
2 (a)(i	2×30	$2 \times 2 \times 3 \times 5$	4	M1 for systematic method, eg division, factor trees (at
				least one prime)
				A1 cao
(ii	2×48	$2^5 \times 3$		M1 for systematic method, division, factor trees (at least
				one prime)
				A1 cao
(b		12	1	B1 cao
(c	$2^5 \times 3 \times 5$	480	2	B2 cao
				B1 for $2^5 \times 3 \times 5$ or any correct common multiple

Pap	Paper 5506				
	No	Working	Answer	Mark	Notes
3	(a)		$150 < C \le 200$	2	M1 use of cum freq to find the cost of the 20 th or 20.5 th
					car
					OR $\frac{1}{2}\Sigma f^{\text{th}}$ or $\frac{1}{2}(\Sigma f + 1)^{\text{th}}$ car.
					A1 eg 150 to 200, 150 – 200
	(b)		No, because the	1	B1 for 20.5 th or 21 st value in the same internal consistent
			21 st value is in		with 'a'
			the same		OR
			interval		Refers to the median value being low in the interval (statement to be mathematically correct)
					See additional sheet
	(c)	80% = 5200	6500	3	M1 for $(100 - 20)\% = 5200$
	(-)	$\frac{5200}{80} \times 100$		_	M1 for $\frac{5200}{"80"} \times 100$
					A1 cao

Paper 5506					
No	Working	Answer	Mark	Notes	
(a)	$x^2(x+1) = 230$	AG	2	M1 for $x \times x \times (x+1)$ or $x \times x \times x + 1$ oe, $x^2(x+1)$, $x^2 \times x + 1$ A1 cao from $x \times x \times (x+1)$, no need to see 230	
(b)	5 – 150 6 – 252	5.8	4	111 040 1101110 110 110 110 110 110 110	
` /	5.1 – 158.7			B2 for trial between 5.8 and 5.9 inclusive evaluated	
	5.2 – 167.6			(B1 for trial between 5 and 6 inclusive evaluated)	
	5.3 – 177.0			B1 for different trial between 5.8 and 5.85 (not including 5.8)	
	5.4 – 186.6			B1 dep on at least are previous B1 5.8, 5.81, 5.811	
	5.5 – 196.6				
	5.6 - 207.0				
	5.7 - 217.7				
	5.8 - 228.8				
	5.9 –240.2				
	5.85 - 234.4				
5	$\pi \times \left(\frac{15}{2}\right)^2 = 176.715$	88.4 cm ²	3	M1 for $\pi \times \left(\frac{15}{2}\right)^2$ seen	
				A1 88.3 – 88.4	
				B1 for cm ² (independent)	

Paper 5500	Paper 5506					
No	Working	Answer	Mark	Notes		
6 (a)	5 = 0.5x + 1	8	2	M1 for $5 = 0.5x + 1$ A1 cao		
(b)		$y = \frac{1}{2}x + c$	1	B1 for $y = \frac{1}{2}x + c, c \neq 1$, oe		
(c)		x = 2y - 2 OR $x = 2(y - 1)$	2	M1 for correctly multiplying both sides by 2 or correctly isolating $\frac{x}{2}$ A1 for $x = 2(y-1)$, $x = \frac{y-1}{0.5}$, $\frac{y-1}{\frac{1}{2}}$ oe SC B1 for $x = 2y-1$		
7	4x - 6y = 22 $15x + 6y = 54$ $19x = 76$	x = 4, y = -1	4	M1 for coefficients of x or y the same followed by correct operation, allow one arithmetical error A1 cao M1 (dep) for correct sub for other variable A1 cao Trial and improvement 0 marks unless both correct values of x and y found		
8 (a)	$SF = \frac{10}{6}$ $\frac{10}{6} \times 4.8 = 8$	8	2	M1 for sight of $\frac{10}{6}$ or $\frac{6}{10}$ or 1.67 or better or $\frac{CD}{10} = \frac{4.8}{6}$ A1 cao		
(b)		19.8	2	M1 for use of SF from "a" to find AC or BC or $\frac{BC}{4.5} = \frac{4}{6}$ and adding 4 sides A1 cao		

Paper 550	Paper 5506					
No	Working	Answer	Mark	Notes		
9	$\frac{6 \times 10^{15}}{3.2 \times 10^{8}}$ 1.875×10^{7}	4.3×10³	3	B3 for 4.3×10^3 to 4.34×10^3 (B2 for 1.875×10^7 oe or 4300 to 4340, final answer of 1.9×10^7 B1 for sight of 6×10^{15} oe or 3.2×10^8 oe)		
10	$8.5 \times \tan 38$ $= 8.5 \times 0.7813$ $\frac{8.5}{\sin(90 - 38)} = \frac{AB}{\sin 38}$ $AB = \frac{8.5 \times \sin 38}{\sin(90 - 38)}$ $= \frac{5.2331}{0.788} = 6.64$	6.64	3	M1 for correct use of trig, eg tan $38 = \frac{opp}{8.5}$ M1 for $8.5 \times tan 38$ A1 $6.64 - 6.641$ OR M1 for correct substitution into the sine rule M1 (dep) for correct rearrangement for AB = A1 $6.64 - 6.641$		
11 (a)		No, as you would expect about 100. Yes, as it is possible to get 200 sixes with a fair dice	1	B1 for a consistent answer See additional sheet		

Paper 5506	per 5506					
No	Working	Answer	Mark	Notes		
(b)	$\frac{1}{6}, \frac{5}{6}$ + labels		3	B1 for $\frac{5}{6}$ on the red dice, <i>not six</i> branch		
				B1 for a fully complete tree diagram with all branches labelled		
				B1 for $\frac{1}{6}$ and $\frac{5}{6}$ on all remaining branches as		
				appropriate		
(c)(i)	$\left(\frac{1}{6}\right)^2$	$\frac{1}{36}$	2	M1 $\left(\frac{1}{6}\right)^2$ or $\frac{1}{6} \times \frac{1}{6}$ only or 0.28		
				A1 $\frac{1}{36}$ or 0.03 or better		
(ii)	$1 - \left(\frac{5}{6}\right)^2$	$\frac{11}{36}$	3	M2 for $1 - \left(\frac{5}{6}\right)^2$ or $1 - \frac{5}{6} \times \frac{5}{6}$		
	OR			Al cao		
	$\frac{1}{6} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{6}$			OR		
	6 6 6 6 6 6			M1 for $\frac{1}{6} \times \frac{5}{6}$ oe		
				M1 for 2 or 3 only of $\frac{1}{6} \times \frac{5}{6}, \frac{5}{6} \times \frac{1}{6}$, "a"		
				A1 for $\frac{11}{36}$ or 0.31 or better		

Paper 5506					
	No	Working	Answer	Mark	Notes
12	(b)	$\pi \times 30 \times \frac{7.5^{2}}{3} - \pi \times 10 \times \frac{2.5^{2}}{3} = 1767 - 65$ $\frac{S}{2\pi d} = \sqrt{h^{2} + d^{2}}$ $\left(\frac{S}{2\pi d}\right)^{2} = h^{2} + d^{2}$	$h = \sqrt{\frac{S^2 - 4\pi^2 d}{4\pi^2 d^2}}$	3	M1 for either $\pi \times 30 \times \frac{7.5^2}{3}$ or $\pi \times 10 \times \frac{2.5^2}{3}$ M1 (dep) for difference A1 1700 – 1702 SC B1 Using d instead of r, $6800 - 6808$ M1 for correctly isolating $\sqrt{h^2 + d^2}$ or $h^2 + d^2$ or $h + d$ or kh^2 or kh M1(indep) squaring both sides A1 $h = \sqrt{\frac{S^2 - 4\pi^2 d^4}{4\pi^2 d^2}}, h = \frac{\sqrt{S^2 - 4\pi^2 d^4}}{2\pi d}$ $h = \sqrt{\left(\frac{S}{2\pi d}\right)^2 - d^2}$
	(c)	$\left(\frac{30}{20}\right)^2 \times 450 \text{ or } 450 \div \left(\frac{20}{30}\right)^2$	1012.5	2	M1 for sight of correct SF ² including 4:9 A1 1010 to 1013

Paper 5506	i .			
No	Working	Answer	Mark	Notes
13 (a)	$2x(x \pm 20)$	As given	2	$2r(r+20) = 2r \times r + 20$

| No | Working | Answer | Mark | Notes |
| 13 (a)
$$\frac{2x(x+20)}{2} = 400$$
As given	2	M1 $\frac{2x(x+20)}{2}$ or $\frac{2x \times x + 20}{2}$ or $2x(x+20) = 800$	A1 cao following correct working, no need for = 400
SC B1 $2x \times x + \frac{1}{2} \times 2x(10 - \frac{x}{2}) \times 2$	M1 for correct sub, up to signs, in the quad formula		
A1 for 44.7 or $\sqrt{2000}$	A1 for 12.3606 – 12.361, ignore negative solution		
T.I B3 for 12.361			
OR	Completing the square	M1 for $(x+10)^2$ seen	A1 for $-10 \pm \sqrt{500}$

Pap	Paper 5506					
	No	Working	Answer	Mark	Notes	
14	(a)	$0.5 \times 8 \times 15 \times \sin 70^{\circ}$	56.4	2	M1 for correct sub into area formula	
					A1 56.38 – 56.4	
	(b)	$AB^2 = 8^2 + 15^2 - 2 \times 8 \times 15 \times \cos 70^0 = 206.9$	7.84	4	M1 for correct sub into cos rule	
					A1 for 206.9 - 207 or 14.38 – 14.4	
		EITHER			EITHER	
		$0.5 \times AB \times CX = 56.38$			M1 for use of area rule to find CX	
					A1 7.83 – 7.84	
		OR			OR	
		$\sin B = \sin 70$			M1 for correct use of sine rule to find sin B or sin A and	
		$\frac{1}{8} = \frac{1}{\sqrt{206.9'}}$			then sight of 15sin B or 8 sin A	
		B=31.5			A1 7.83 – 7.84	
		15 sin '31.5'				

Paper 550	Paper 5506						
No	Working	Answer	Mark	Notes			
15 (a)	$4a^{2} - 4a + 1 - (4b^{2} - 4b + 1) =$ $4(a^{2} - b^{2}) - 4(a - b)$ $4(a - b)(a + b - 1)$	AG	3	Expansion Method M1 for a correct expansion of any one of the three terms M1(dep) on an attempt to expand all 3 terms and show LHS = RHS A1 fully correct algebra RHS exp is $4(a^2 + ab - a - ba - b^2 + b)$			
(b)	OR $((2a-1)-(2b-1))((2a-1)+(2b-1))$ $(2a-2b)(2a+2b-2)$ Any 2 odd square numbers have the above form If a and b are both even or odd then $a-b$ is even, so $4(a-b)$ is a multiple of 8 If one of a,b is odd, then $a+b-1$ is even, so $4(a+b-1)$ is a multiple of 8		3	OR Factorisation Method M1 for attempt to use difference of 2 squares on LHS M1 for one bracket correctly simplified A1 fully correct B1 'any 2 square nos have the above form' (may be implied by sight of $(2a-1)^2 - (2b-1)^2$ in part (b)) B1 first reason B1 second reason SC B1 for $(2r+1)^2 - (2r-1)^2$ B1 for 8r			
16 (a)	$g_L = \frac{2 \times 4.495}{1.35^2 \times \sin 30.5}$	9.719	4	B2 for any 4 of 4.505, 1.25, 29.5, 4.495, 1.35, 30.5 seen (B1 for any two or three seen) B1 for 11.710 – 11.7103			
(b)	$g_u = \frac{2 \times 4.505}{1.25^2 \times \sin 29.5}$ Round, until lower and upper bounds agree	11.710 10	1	B1 cao 9.719 – 9.71904 B1 for 10 + reason "they agree to this level of accuracy"			

Pap	Paper 5506					
	No	Working	Answer	Mark	Notes	
17	(a)(i) (ii)		$\begin{array}{c} xy \\ y^2 \end{array}$	3	B1 cao B1 for y^2 or $y \times y$	
	(iii)		$\frac{x}{2}$		B1 for $\frac{x}{2}$ or $0.5x$ or $2^{-1}x$	
	(b)	Divide to get $2y = 1$	q = -1	2	M1 for $2y = 1$ or $\frac{x}{2} = 32$ or $p + q = 5$ or $1 + p + 2q = 5$	
			<i>p</i> = 6		Al cao	
18	(a)	$x^2 - 2mx + m^2 - k$	$k = m^2$	2	M1 for correct exp of $(x - m)^2$ or correct completion of	
					the square eg $\left(x - \frac{2m}{2}\right)^2 - \left(\frac{2m}{2}\right)^2$ A1 cao SC B1 for $k = -m^2$	
	(b)(i)	Min value is $-m^2$	$-m^2$	3	M1 for recognition that min value occurs when $(x-m)^2 = 0$ (either (b)(i) or (b)(ii) correct implies this M1)	
	(ii)	x = m	m		A1 ft on 'k', "-k" gets M1 A0 A1 cao	
19		$0.06 \times 0.05 = 0.003$	No	2	M1 for 0.06×0.05	
					A1 correct conclusion based on 0.003 or 0.06 x 0.05 stated as \neq 0.0011 OR M1 for statement that for the two events to be independent P (BL and CL) = P(BL) \times P(CL)	

Paper 550	Paper 5506						
No	Working	Answer	Mark	Notes			
20		50	3	B1 50 or $\frac{100}{2}$			
		50		B1 for 50 or "a"			
		4		B1 4 or $\frac{360}{90}$ oe			