Centre No.					
Candidate No.					

Paper Reference						
\mathbf{S}	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{5}$		\mathbf{O}	$\mathbf{5}$

Surname	Initial(s)
Signature	

5505/05

Edexcel GCSE

 Mathematics A - 1387Paper 5 (Non-Calculator) Higher Tier
Wednesday 4 June 2003 - Afternoon
 Time: 2 hours

```
Materials required for examination
Ruler graduated in centimetres and
millimetres, protractor, compasses,
pen, HB pencil, eraser.
Tracing paper may be used.
```

Items included with question papers
Formulae sheet

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s), and your signature.
Check that you have the correct question paper.
Answer ALL the questions in the spaces provided in this question paper.
Supplementary answer sheets may be used.

Information for Candidates

The total mark for this paper is 100 .
The marks for the individual questions and parts of questions are shown in round brackets: e.g. (2). Calculators must not be used.
This paper has 24 questions. There are no blank pages.

Advice to Candidates

Show all stages in any calculations.
Work steadily through the paper.
Do not spend too long on one question.
If you cannot answer a question, leave it and attempt the next one.
Return at the end to those you have left out.

5505/05 Edexcel GCSE

Mathematics A-1387
Paper 5 (Non-Calculator)
Higher Tier Time: 2 hours
Wednesday 4 June 2003 - Afternoon

1. Using the information that

$$
97 \times 123=11931
$$

write down the value of
(i) 9.7×12.3
(ii) 0.97×123000
(iii) $11.931 \div 9.7$
2. Ben bought a car for $£ 12000$.

Each year the value of the car depreciated by 10%.

Work out the value of the car two years after he bought it.
\qquad
3. Solve $7 r+2=5(r-4)$
\qquad
4. (a) $-2<x \leqslant 1$
x is an integer.
Write down all the possible values of x.
(b) $-2<x \leqslant 1 \quad y>-2 \quad y<x+1$
x and y are integers.
On the grid, mark with a cross (\times), each of the six points which satisfies all these 3 inequalities.

(3)
5. Here are the first 5 terms of an arithmetic sequence.

$$
6, \quad 11, \quad 16,21,26
$$

Find an expression, in terms of n, for the nth term of the sequence.
6.

Shape \mathbf{A} is rotated 90° anticlockwise, centre (0,1), to shape B.
Shape \mathbf{B} is rotated 90° anticlockwise, centre $(0,1)$, to shape \mathbf{C}.
Shape \mathbf{C} is rotated 90° anticlockwise, centre $(0,1)$, to shape \mathbf{D}.
(a) Mark the position of Shape \mathbf{D}.
(b) Describe the single transformation that takes shape \mathbf{C} to shape \mathbf{A}.
7. The diagram represents a triangular garden $A B C$.

The scale of the diagram is 1 cm represents 1 m .
A tree is to be planted in the garden so that it is
nearer to $A B$ than to $A C$,
within 5 m of point A.
On the diagram, shade the region where the tree may be planted.

8. This table shows some expressions.

The letters x, y and z represent lengths.
Place a tick in the appropriate column for each expression to show whether the expression can be used to represent a length, an area, a volume or none of these.

Expression	Length	Area	Volume	None of these
$x+y+z$				
$x y z$				
$x y+y z+x z$				

(3)

9. Mr Beeton is going to open a restaurant.

He wants to know what type of restaurant people like.
He designs a questionnaire.
(a) Design a suitable question he could use to find out what type of restaurant people like.

He asks his family "Do you agree that pizza is better than pasta?"
This is not a good way to find out what people who might use his restaurant like to eat.
(b) Write down two reasons why this is not a good way to find out what people who might use his restaurant like to eat.

First reason \qquad
\qquad
Second reason \qquad
\qquad
10. A spaceship travelled for 6×10^{2} hours at a speed of $8 \times 10^{4} \mathrm{~km} / \mathrm{h}$.
(a) Calculate the distance travelled by the spaceship. Give your answer in standard form.

One month an aircraft travelled $2 \times 10^{5} \mathrm{~km}$. The next month the aircraft travelled $3 \times 10^{4} \mathrm{~km}$.
(b) Calculate the total distance travelled by the aircraft in the two months. Give your answer as an ordinary number.
11. (a) Expand and simplify

$$
(x+y)^{2}
$$

(b) Hence or otherwise find the value of

$$
3.47^{2}+2 \times 3.47 \times 1.53+1.53^{2}
$$

12.

Diagram NOT

In the diagram, A, B and C are points on the circle, centre O.
Angle $B C E=63^{\circ}$.
$F E$ is a tangent to the circle at point C.
(i) Calculate the size of angle $A C B$.

Give reasons for your answer.
(ii) Calculate the size of angle $B A C$.

Give reasons for your answer.
13. Simplify fully
(i) $\left(p^{3}\right)^{3}$
(ii) $\frac{3 q^{4} \times 2 q^{5}}{q^{3}}$
\qquad
\qquad
\qquad
14. Mary recorded the heights, in centimetres, of the girls in her class.

She put the heights in order.

132	144	150	152	160	162	162	167
167	170	172	177	181	182	182	

(a) Find
(i) the lower quartile,
\qquad cm
(ii) the upper quartile.
(b) On the grid, draw a box plot for this data.

(3)
15.

The diagram shows a sector of a circle, centre O.
The radius of the circle is 9 cm .
The angle at the centre of the circle is 40°.
Find the perimeter of the sector.
Leave your answer in terms of π.
16. Work out
(i) 4^{0}
(ii) 4^{-2}
(iii) $16^{\frac{3}{2}}$
17. The force, F, between two magnets is inversely proportional to the square of the distance, x, between them.

When $x=3, F=4$.
(a) Find an expression for F in terms of x.

$$
F=
$$

\qquad
(b) Calculate F when $x=2$.
(1)
(c) Calculate x when $F=64$.
18. Work out

$$
\frac{(5+\sqrt{3})(5-\sqrt{3})}{\sqrt{22}}
$$

Give your answer in its simplest form.
(3)
19. The incomplete table and histogram give some information about the ages of the people who live in a village.

Frequency density

(a) Use the information in the histogram to complete the frequency table below.

Age (x) in years	Frequency
$0<x \leqslant 10$	160
$10<x \leqslant 25$	
$25<x \leqslant 30$	100
$30<x \leqslant 40$	120
$40<x \leqslant 70$	

(2)
(b) Complete the histogram.
(2)
20. Simplify fully
(a) $2(3 x+4)-3(4 x-5)$
(b) $\left(2 x y^{3}\right)^{5}$
(2)
(c) $\frac{n^{2}-1}{n+1} \times \frac{2}{n-2}$
21.

Enlarge triangle A by scale factor $-1 \frac{1}{2}$, centre O.
22. A bag contains 3 black beads, 5 red beads and 2 green beads.

Gianna takes a bead at random from the bag, records its colour and replaces it. She does this two more times.

Work out the probability that, of the three beads Gianna takes, exactly two are the same colour.
23.

Diagram NOT accurately drawn

The diagram shows a regular hexagon $A B C D E F$ with centre O.

$$
\overrightarrow{O A}=6 \mathbf{a} \quad \overrightarrow{O B}=6 \mathbf{b}
$$

(a) Express in terms of \mathbf{a} and/or \mathbf{b}
(i) $\overrightarrow{A B}$,
(ii) $\overrightarrow{E F}$.
X is the midpoint of $B C$.
(b) Express $\overrightarrow{E X}$ in terms of \mathbf{a} and/or \mathbf{b}
Y is the point on $A B$ extended, such that $A B: B Y=3: 2$
(c) Prove that E, X and Y lie on the same straight line.

(3)

24. This is a sketch of the curve with equation $y=\mathrm{f}(x)$.

It passes through the origin O.

The only vertex of the curve is at $A(2,-4)$
(a) Write down the coordinates of the vertex of the curve with equation
(i) $y=\mathrm{f}(x-3)$,
(...... ,)
(ii) $y=\mathrm{f}(x)-5$,
(iii) $y=-\mathrm{f}(x)$,
(iv) $y=\mathrm{f}(2 x)$.
(...... ,)
(...... ,)
(...... ,)
(4)

The curve with equation $y=x^{2}$ has been translated to give the curve $y=\mathrm{f}(x)$.
(b) Find $\mathrm{f}(x)$ in terms of x.

$$
\mathrm{f}(x)=
$$

\qquad

